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Abstract: Meta-heuristic algorithms, particularly those based on swarm intelligence, are highly 

effective for solving black-box optimization problems. However, maintaining a balance between 

exploration and exploitation within these algorithms remains a significant challenge. This paper 

introduces a useful algorithm, called Escape or Escape Algorithm (ESC), inspired by crowd 

evacuation behavior, to solve real-world cases and benchmark problems. The ESC algorithm 

simulates the behavior of crowds during the evacuation, where the population is divided into calm, 
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herding, and panic groups during the exploration phase, reflecting different levels of decision-

making and emotional states. Calm individuals guide the crowd toward safety, herding individuals 

imitate others in less secure areas, and panic individuals make volatile decisions in the most 

dangerous zones. As the algorithm transitions into the exploitation phase, the population converges 

toward optimal solutions, akin to finding the safest exit. The effectiveness of the ESC algorithm is 

validated on two adjustable problem size test suites, CEC 2017 and CEC 2022. ESC ranked first in 

the 10-dimensional, 30-dimensional tests of CEC 2017, and the 10-dimensional and 20-dimensional 

tests of CEC 2022, and second in the 50-dimensional and 100-dimensional tests of CEC 2017. 

Additionally, ESC performed exceptionally well, ranking first in the engineering problems of 

pressure vessel design, tension/compression spring design, and rolling element bearing design, as 

well as in two 3D UAV path planning problems, demonstrating its efficiency in solving real-world 

complex problems, particularly complex problems like 3D UAV path planning. Compared with 12 

other high-performance, classical, and advanced algorithms, ESC exhibited superior performance 

in complex optimization problems. The source codes of ESC algorithm will be shared at 

https://aliasgharheidari.com/ESC.html and other websites. 
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1 Introduction 

With the rapid advancement of technology, solving complex optimization problems has become 

increasingly critical across various domains, such as engineering and economics, particularly in 

emerging fields like 3D UAV path planning[1-3]. These optimization problems require finding the 

best solution that maximizes or minimizes an objective function under specific constraints [4]. 

Notably, the 3D UAV path planning problem is a challenging problem characterized by its 

computational complexity and the significant challenge of finding optimal paths in three-

dimensional space under various constraints. As the complexity of real-world problems like this 

continues to increase, traditional optimization methods, such as Newton's method[5] and the 

steepest descent method[6], have shown significant limitations. These methods often struggle with 

high-dimensional and constraint-heavy problems, relying heavily on the continuity of the objective 

function and frequently falling into local optima[7]. 

To address these challenges, meta-heuristic algorithms have emerged as powerful tools, 

offering more flexible and robust solutions to complex optimization problems. Inspired by natural 

phenomena and human behavior, these algorithms leverage stochastic techniques and intelligent 

learning strategies to effectively navigate complex solution spaces[8, 9]. Meta-heuristic algorithms 

have demonstrated their effectiveness across various domains, particularly in applications where 

traditional deterministic methods cannot show a fitting performance [10]. Their key advantages 

include simplicity, flexibility, the ability to avoid local optima, and independence from the specific 
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nature of the problem, making them suitable for a wide range of applications[11, 12]. 

Meta-heuristic algorithms are generally classified into four categories based on their inspiration 

and methodology: evolutionary algorithms, swarm intelligence algorithms, physics-based 

algorithms, and human behavior-based algorithms[13], Fig.1 shows the classification of meta-

heuristic algorithm. Among these, human behavior-based algorithms are particularly noteworthy for 

their ability to model complex decision-making processes, social interactions, and learning 

mechanisms. This category of algorithms has been successfully applied in various optimization 

problems, demonstrating significant potential for further development[14-16]. 

However, despite the advancements in meta-heuristic algorithms, there remains a pressing need 

for algorithms that can more effectively solve complex real-world optimization problems, such as 

the difficult problem of 3D UAV path planning, while enriching the diversity of existing meta-

heuristic approaches. Recognizing this gap, we propose Escape Algorithm (ESC), a useful meta-

heuristic algorithm inspired by the dynamics of crowd evacuation. The ESC algorithm stands out 

from existing approaches by incorporating unique behavioral models observed during emergency 

evacuations, such as the "leader-follower" system [17, 18] and categorizing individuals into calm, 

herding, and panic groups. These models allow the ESC algorithm to simulate the diverse and 

adaptive strategies that people use in life-threatening situations, translating them into a 

computational framework that can solve complex optimization problems more effectively. 

The ESC algorithm is distinct in its approach by drawing on the nuanced dynamics of crowd 

behavior, which has not been fully explored in existing meta-heuristic algorithms. Specifically, the 

ESC algorithm leverages the behaviors of different crowd segments—calm, herding, and panic 

groups—during evacuations, integrating these behaviors into its exploration and exploitation phases. 

This methodology not only provides a useful way to simulate the optimization process but also 

enhances the algorithm's ability to avoid local optima and achieve better global solutions. Through 

the incorporation of these unique behavioral strategies, the ESC algorithm offers significant 

improvements in solving complex, real-world problems, such as the complex 3D UAV path planning 

problem, as demonstrated through rigorous testing on 42 benchmark functions from the CEC 2017 

and CEC 2022 test suites, where it has outperformed most existing algorithms across various 

dimensions. 

The primary motivation for this research is to develop a more effective algorithm for solving 

complex real-world optimization challenges, particularly those encountered in 3D UAV path 

planning. Additionally, this work aims to contribute to the diversification of existing optimization 

algorithms, providing the research community with new tools for addressing a broader array of 

problems. In the study and application of optimization algorithms, it is widely recognized that no 

single algorithm can offer the best solution for every situation. This understanding is underscored 

by the "No Free Lunch" (NFL) theorem [19], which asserts that the average performance of all 

algorithms is equal across all possible optimization problems. This aligns with the NFL theorem's 

principle, highlighting the need for diverse and innovative approaches like ESC. 

The rest of this paper is organized as follows: Section 3 introduces the inspiration behind the 



ESC algorithm and presents the mathematical model. Section 4 details the numerical experiments 

conducted on the ESC algorithm and analyzes the relevant results. Section 5 applies the ESC 

algorithm to solve four practical engineering problems and two UAV path planning problems. 

Finally, Section 6 summarizes the research findings and discusses potential future research 

directions. 

 

 

Fig. 1 The classification of meta-heuristic algorithms. 

2 Related Works 

This section will review the four MH (Meta- Heuristic) algorithms mentioned above. 

Evolutionary algorithms simulate the process of natural selection and biological evolution and 

search the optimal solution by simulating the mechanism of biological recombination, mutation, 

and selection. The most popular EA is GA[20], which mimics Darwinian evolution. The social 

behavior of animal groups, such as ants, bees, and birds inspire swarm intelligence algorithms. For 

example, Particle swarm optimization[21] (PSO) was proposed in 1995. Physics-based algorithms 

draw on the physical laws of nature, such as gravity and the motion of celestial bodies[22]. Finally, 

algorithms based on human behavior mimic human social interactions and learning processes, such 

as the dynamics of teaching and learning[23]. These categories reflect the diversity of meta-

heuristics and their potential for a wide range of applications in solving complex optimization 

problems. 

Of the four categories of meta-heuristic algorithms mentioned above, the particularly 

noteworthy ones are those based on human behavior heuristics. Human's unique thinking ability and 

intelligence occupy a prominent place in nature, providing a rich source of inspiration for 

developing new optimization algorithms. Such algorithms, which mimic human decision-making 

processes, social interactions and learning mechanisms, have proven effective in solving complex 

problems across multiple domains. The development and application of optimization algorithms 

based on human behavior demonstrate the great potential of human intelligence in solving 



computing challenges. In the last ten years, some algorithms inspired by human behavior in the last 

decade are listed in Table 1. 

In addition to the standalone meta-heuristic algorithms, hybrid optimization algorithms have 

gained significant attention due to their ability to combine the strengths of different approaches. 

Hybrid algorithms enhance performance by integrating various strategies, making them more 

effective in solving complex and large-scale problems. Notable examples include L-SHADE[24] 

and iL-SHADE[25], which are advanced variants of the Differential Evolution (DE) algorithm[26] 

that incorporate adaptive mechanisms to maintain diversity and prevent premature convergence. 

The hybrid whale optimization algorithm (WOABHC)[27] is another example, which combines 

WOA with β-hill climbing to enhance exploration and reduce premature convergence, improving 

overall optimization accuracy." 

Other hybrid algorithms include the Exploratory Cuckoo Search (ECS)[28], which enhances 

the original Cuckoo Search algorithm by incorporating refraction learning, Gaussian perturbation, 

and multiple mutation strategies to improve exploration and avoid stagnation in suboptimal 

solutions. Similarly, the Improved Salp Swarm Algorithm (ISSA) with Highly Disruptive 

Polynomial Mutation (HDPM)[29] integrates advanced mutation techniques and opposition-based 

learning to enhance convergence rates and exploration capabilities. The Hybrid Snake Optimizer 

Algorithm (HSOA)[30] for solving Economic Load Dispatch Problems with Valve Point Effect 

enhances the original Snake Optimizer (SO) by introducing Oppositional-mutual learning in the 

initialization phase and dynamic polynomial mutation throughout the optimization process. These 

innovations improve population diversity and reduce early convergence issues. These hybrid 

algorithms represent the ongoing innovation in meta-heuristic optimization, offering powerful tools 

for addressing increasingly complex optimization challenges [31].  

In summary, the landscape of meta-heuristic algorithms is rich and diverse, encompassing 

traditional approaches such as evolutionary, swarm intelligence, physics-based, human behavior-

inspired algorithms, and innovative hybrid algorithms. By integrating multiple strategies' strengths, 

these hybrid methods have enhanced performance in tackling complex and large-scale optimization 

problems. The continuous development of both traditional and hybrid algorithms reflects the 

dynamic nature of optimization research and its expanding potential to solve a wide array of 

challenging problems across various fields.



Table 1 Some Meta-heuristic Algorithms based on Human Behavior (2013-2023) 

Algorithms Inspiration Reference 

Cultural Evolution Algorithm The evolution of social civilization [32] 

Soccer League Competition Algorithm The competitive behavior of teams and players  [33] 

Exchange Market Algorithm The process of trading shares on the stock market [34] 

Election Algorithm The behavior of candidates and voters in elections [35] 

Passing Vehicle Search The vehicle was overtaking on a two-lane highway [36] 

Social Learning Optimization Evolution of human intelligence and social learning theory [37] 

Football Game Algorithm Players' behavior during a game [38] 

Human Behavior-Based Optimization Human behavior [39] 

Social Engineering Optimizer Rules of social engineering techniques [40] 

Queuing Search Algorithm Human queuing activity [41] 

Evolution and Learning Optimization Human social learning behavior organized as family in social 

environment 

[42] 

Search and Rescue Optimization Human exploration in search and rescue operations [43] 

Social Ski-Driver Optimization Behavior in skiing [44] 

Gaining Sharing Knowledge-Based Algorithm The process of acquiring and sharing knowledge in human life [45] 

Political Optimizer The multi-stage process of politics [46] 

Heap-Based Optimizer Subject to corporate hierarchy [47] 

Most Valuable Player Algorithm A sport in which players team up [48] 

Herd Immunity Optimization Herd immunity concept [49] 

Stock Exchange Trading Optimization The behavior of traders and changes in stock prices in the 

stock market 

[50] 

Anti Coronavirus Optimization Algorithm Isolation behavior in the fight against  [51] 

Skill Optimization Algorithm Human efforts to acquire and improve skills. [52] 

Chernobyl Disaster Optimizer The nuclear reactor core explosion of Chernobyl [53] 



3. Escape Algorithm (ESC) 

ESC is inspired by how people behave during emergency evacuations. This section explains 

the background of crowd evacuation systems and how these behaviors inspired the design of the 

ESC algorithm. By modeling the different responses—calm, herding, and panic—of individuals in 

a crowd, the ESC algorithm effectively balances exploration and exploitation in solving complex 

optimization problems. 

3.1 Inspiration 

     In this section, we will introduce the crowd evacuation system's research background and 

explain the Escape algorithm's inspiration source. 

The development of the ESC draws profound inspiration from the nuanced dynamics of human 

behavior during emergency evacuations[54]. In the chaotic backdrop of emergency scenarios—

ranging from natural disasters to human-induced threats—individuals exhibit a spectrum of 

behaviors influenced by panic, environmental conditions, and the collective movement of the crowd 

[55-57]. These behaviors significantly impact the efficiency of evacuation processes, highlighting 

the importance of adaptive and strategic planning. Our algorithm encapsulates this complexity 

through a computational lens, translating the observed human behaviors into a meta-heuristic 

framework to solve optimization problems. 

    The ESC algorithm is particularly inspired by the "leader-follower" system[58, 59] observed 

in crowds, where individuals naturally assume roles that guide the collective movement. In this 

system, leaders (both static and dynamic) emerge to influence the direction and pace of the 

evacuation, while followers form the bulk of the crowd, their movement influenced by those around 

them. This phenomenon is mirrored in our algorithm through the division of agents into calm, 

herding, and panic crowd[60] in the exploration phase of the algorithm, each exhibiting distinct 

behaviors that collectively drive the search process towards optimal solutions. 

• Calm crowd: The calm individuals in a crowd, who assess situations with a clear mind 

and make rational decisions. These agents methodically search the problem space, akin 

to calm individuals finding efficient paths in an evacuation, guiding others through 

their steady influence. 

• Herding crowd: The herding behavior, where individuals follow the crowd without 

clear personal direction, is mirrored in the conforming agents of our algorithm. This 

behavior enhances the exploitation phase, as agents converge on promising areas of 

the search space, similar to how individuals in a crowd might follow others to 

perceived exits or safe areas. 

• Panic crowd: The panic-stricken individuals, whose unpredictable and erratic 

movements can both hinder and unexpectedly aid in finding escape routes, inspire the 

diversification mechanisms in our algorithm. Their behavior is replicated in the panic 



agents, introducing randomness and preventing premature convergence to local 

optima, akin to how panic in a crowd can lead to discovering unconventional exits. 

    Through the ESC algorithm, we harness the intrinsic wisdom of crowd behavior during 

emergencies, translating the interplay of calm, herding, and panic into a computational model. This 

approach not only offers a useful perspective on algorithm design but also underscores the potential 

of natural and human phenomena as sources of inspiration for developing advanced problem-solving 

strategies.  

3.2 Algorithm and Population Initialization 

    ESC is designed to simulate crowd behavior during emergency evacuations, where individuals 

must navigate toward exits in a dynamic and uncertain environment. The ESC introduces the 

concept of an Elite Pool, representing the best-performing individuals who symbolize potential exits 

identified by the crowd. This mechanism enhances the algorithm’s ability to explore the solution 

space thoroughly, avoiding local optima by simultaneously considering multiple directions. 

 The ESC algorithm begins by initializing a population of 𝑁  individuals, each described by a  

𝐷 -dimensional vector 𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2… , 𝑥𝑖,𝐷)  The value of the 𝑗 − 𝑡ℎ  dimension for the 𝑖 − 𝑡ℎ 

individual is given by: 

𝒙𝑖,𝑗 = 𝑙𝑏𝑗 + 𝑟𝑖,𝑗 × (𝑢𝑏𝑗 − 𝑙𝑏𝑗),  𝑟𝑖,𝑗~𝑈(0,1)                                   (1) 

  Here,𝑙𝑏𝑗 and 𝑢𝑏𝑗  represent the lower and upper bounds of the 𝑗 − 𝑡ℎ  dimension, ensuring that 

each individual’s initial position is randomly distributed within the feasible space. The random 

variable 𝑟𝑖,𝑗  is uniformly distributed between 0 and 1, reflecting the randomness in the initial 

cdecision-making process during an evacuation. 

 After initializing the population, the fitness of each individual 𝑓𝑖 = 𝑓(𝑥𝑖) is evaluated using a 

fitness function 𝑓.The population is then sorted by fitness in ascending order, and the top individuals 

are stored in the Elite Pool 𝐸 as Eq. (2), the parameter that represents the number of potential safety 

exits found by the crowd. 

𝑬 = {𝒙(1), 𝒙(2), … , 𝒙(exist)}                                             (2) 

       These elite individuals represent the best potential solutions (exits) identified by the population 

and serve as reference points for subsequent iterations. 

3.3 Panic Index and Iterative Process 

 The ESC algorithm models the iterative process to reflect the evolving behavior of the crowd 

as the evacuation progresses. The algorithm adjusts individual movements based on their 

classification into calm, conforming, or panic groups, corresponding to different behavioral 

responses during an evacuation. 

 At the start of each iteration 𝑡, the panic index 𝑃(𝑡) is calculated as follows: 

𝑃(𝑡) = 𝑐𝑜𝑠 (
𝜋𝑡

6T
)                                                        (3) 

 The panic index reflects the overall level of panic in the crowd, with higher values indicating 



more chaotic behavior. This index decreases over time as 𝑡 goes from 0 to the number of iterations 

𝑇, simulating the crowd’s adaptation to the evacuation environment. 

3.4 Exploration Phase 

 During the exploration phase, when 𝑡 ≤
𝑇

2
  (T is the maximum number of iterations of the 

algorithm, and t is the current number of iterations), the population is divided into calm, conforming, 

and panic groups based on their fitness levels. Specifically, the population is sorted in ascending 

order of fitness, and individuals are stratified into three groups according to the proportions,𝑐 =

0.15 , ℎ = 0.35 ,and 𝑝 = 0.5  for the calm, conforming, and panic groups, respectively. This 

stratification reflects the varied responses of individuals in a crowd during an evacuation, where 

some remain calm, others conform to the group's behavior, and some panic. 

3.4.1 Calm Group Update 

 Individuals in the calm group behave rationally, moving toward a central position 𝐶𝑗, which 

represents the collective decision of the group: 

     𝑥𝑖,𝑗
new = 𝑥𝑖,𝑗 +𝑚1 × (𝑤1 × (𝐶𝑗 − 𝑥𝑖,𝑗) + 𝑣𝑐,𝑗) × 𝑃(𝑡)                       (4) 

 Here,𝐶𝑗is the center of the calm group in the 𝑗 − 𝑡ℎ dimension, calculated as the mean of all 

calm individuals in that dimension. The vector 𝑣𝑐,𝑗 is defined as Eq. (5), where  𝑅𝑐,𝑗 = 𝑟𝑚𝑖𝑛,𝑗
𝑐 +

𝑟𝑖,𝑗 × (𝑟𝑚𝑎𝑥,𝑗
𝑐 − 𝑟𝑚𝑖𝑛,𝑗

𝑐 )  is a randomly generated position within the calm group’s 

bounds.𝑟𝑚𝑖𝑛,𝑗
𝑐  𝑎𝑛𝑑  𝑟𝑚𝑎𝑥,𝑗

𝑐   represent the minimum and maximum values of the j − th dimension for 

all individuals in the calm group and 𝜖𝑗 =
𝑧𝑗

50
(𝑧𝑗~𝑁(0,1)) represents a slight adjustment in the 

individual's movement.The binary variable 𝑚1 is determined by a Bernoulli distribution , allowing 

for partial updates, which simulates parts of the dimension that are not updated due to crowd 

congestion. Specifically, 𝑚1 is generated such that it takes the values 0 or 1 with equal probability. 

𝑤1 is an adaptive Levy weight, calculated using a Levy distribution to simulate the step sizes in the 

exploration phase, which is defined in section 3.6. Fig 2 shows the updating process of the calm 

group. 

𝑣𝑐,𝑗 = 𝑅𝑐,𝑗 − 𝑥𝑖,𝑗 + 𝜖𝑗                                                  (5) 

                                   

          Fig. 2 Updated schematic of the Calm Group  



3.4.2 Herding Group Update 

Herding individuals follow the behavior of both the calm and panic groups. Their positions are 

updated based on influences from both: 

𝑥𝑖,𝑗
new = 𝑥𝑖,𝑗 +𝑚1 × (𝑤1 × (𝐶𝑗 − 𝑥𝑖,𝑗) + 𝑚2 ×𝑤2 × (𝑥𝑝,𝑗 − 𝑥𝑖,𝑗) + 𝑣ℎ,𝑗 × 𝑃(𝑡))          (6) 

In this equation,𝑥𝑝,𝑗is a randomly selected individual from the panic group, representing a potential 

direction of panic-driven movement.𝑤2is another adaptive Levy weight used for the conforming 

group, which is defined in section 3.6. The vector 𝑣ℎ,𝑗is defined as Eq. (7), where 𝑅ℎ,𝑗 = 𝑟𝑚𝑖𝑛,𝑗
ℎ +

𝑟𝑖,𝑗 × (𝑟𝑚𝑎𝑥,𝑗
ℎ − 𝑟𝑚𝑖𝑛,𝑗

ℎ ) is a randomly generated position within the herding group’s bounds. The 

𝑟𝑚𝑖𝑛,𝑗
ℎ  𝑎𝑛𝑑  𝑟𝑚𝑎𝑥,𝑗

ℎ    represent the minimum and maximum values of the j − th  dimension for all 

individuals in the herding group and the 𝑚2 is a binary variable which is generated through the same 

mechanism as 𝑚1. Fig 3 shows the updating process of the herding group. 

𝑣ℎ,𝑗 = 𝑅ℎ,𝑗 − 𝑥𝑖,𝑗 + 𝜖𝑗                                                   (7) 

                            

Fig. 3 Updated schematic of the herding crowd 

3.4.3 Panic Group Update 

 Panic-driven individuals explore the solution space more erratically, influenced by potential 

exits (from the Elite Pool) and random directions from other individuals: 

𝑥𝑖,𝑗
new = 𝑥𝑖,𝑗 +𝑚1 × (𝑤1 × (𝐸𝑗 − 𝑥𝑖,𝑗) + 𝑚2 ×𝑤2 × (𝑥rand,𝑗 − 𝑥𝑖,𝑗) + 𝑣𝑝,𝑗 × 𝑃(𝑡))       (8) 

Here,𝐸𝑗 is a randomly selected individual from the Elite Pool, representing a possible exit that a 

panic-driven individual might head toward.𝑥𝑟𝑎𝑛𝑑,𝑗 represents a randomly selected individual from 

the population, introducing an element of randomness in the panic-driven movement. The vector 

𝑣ℎ,𝑗 is defined as Eq. (9), where  𝑅𝑝,𝑗 = 𝑟𝑚𝑖𝑛,𝑗
𝑝

+ 𝑟𝑖,𝑗 × (𝑟𝑚𝑎𝑥,𝑗
𝑝

− 𝑟𝑚𝑖𝑛,𝑗
𝑝

)  is a randomly generated 

position within the panic group’s bounds.𝑟𝑚𝑖𝑛,𝑗
𝑝

 𝑎𝑛𝑑  𝑟𝑚𝑎𝑥,𝑗
𝑝

  represent the minimum and maximum 

values of the j − th  dimension for all individuals in the panic group. Fig 4 shows the updating 

process of the panic group. 

 

𝑣𝑝,𝑗 = 𝑅𝑝,𝑗 − 𝑥𝑖,𝑗 + 𝜖𝑗                                                   (9) 



                   

Fig. 4 Panic crowd update schematic 

3.5 Exploitation Phase 

 As the iteration progresses beyond 
𝑇

2
 , the algorithm transitions into the exploitation phase, 

where all individuals are considered calm. The focus shifts to fine-tuning positions based on the best 

solutions identified so far. During this phase, individuals refine their positions by moving closer to 

members of the Elite Pool, which represents both possible safety exits and the best solutions 

identified in previous iterations, as well as randomly selected individuals from the population. This 

process simulates the crowd's gradual convergence towards identified optimal exits. The position 

update during this phase is given by the Eq. (10). 

   𝑥𝑖,𝑗
𝑛𝑒𝑤 = 𝑥𝑖,𝑗 +𝑚1 ⋅ 𝑤1 ⋅ (𝐸𝑗 − 𝑥𝑖,𝑗) + 𝑚2 ⋅ 𝑤2 ⋅ (𝑥rand,𝑗 − 𝑥𝑖,𝑗)      (10) 

 In Eq. (10), 𝑥𝑖,𝑗represents the position of the 𝑖 − 𝑡ℎ individual in the 𝑗 − 𝑡ℎ dimension.𝐸𝑗 is the 

position of a member from the Elite Pool, symbolizing both a possible safety exit and one of the 

best solutions identified so far. 𝑥𝑟𝑎𝑛𝑑,𝑗 is the position of a randomly selected individual from the 

population. This allows individuals to refine their positions by moving closer to both the Elite Pool 

members and randomly selected individuals, simulating the crowd’s gradual convergence towards 

the identified optimal exits. Fig. 5 shows the population update schematic in the exploration phase. 

 

Fig. 5 Population update schematic in the exploration phase 



3.6 Adaptive Levy Weights and Behavior Simulation 

 The step sizes of individuals are controlled by adaptive Levy weights, which simulate varying 

degrees of exploration and exploitation at different stages of the algorithm. The Levy weight for 

each dimension j is calculated as Eq. (11) 

𝑤𝑗 =
|𝑢𝑗|

|𝑣𝑗|
1
𝛽

,  𝑢𝑗~𝑁(0, 𝜎
2),  𝑣𝑗~𝑁(0,1),  𝜎 = (

𝛤(
1+𝛽

2
)⋅𝛽⋅2

1
𝛽
−1

𝛤(1+𝛽)⋅𝑠𝑖𝑛(
𝜋𝛽

2
)
)

1

𝛽

                     (11) 

 where 𝛽 is a parameter that dynamically adjusts as the algorithm progresses as Eq. (12) and Γ 

is the Gamma function. 

          𝛽 = 𝛽base + 0.5 × 𝑠𝑖𝑛 (
𝜋𝑡

2T
)                                                 (12) 

 In Eq. (12), 𝛽𝑏𝑎𝑠𝑒 is the initial value of 𝛽 , which is same to the empirical setting used in the 

Harris Hawks Optimization (HHO) [61]  algorithm, with a value of 1.5. This adjustment allows the 

algorithm to initially make larger exploratory moves (when 𝛽 is smaller) and gradually transition to 

finer, exploitative moves (as 𝛽  increases), mirroring the natural progression from panic-driven 

exploration to calm, rational decision-making in a crowd. 

3.7 Fitness Evaluation and Elite Pool Update 

 At each iteration, the fitness of each updated individual is recalculated. A greedy selection 

process is used to retain the better solution between the old and new positions: 

        𝑓𝑖
new = 𝑓(𝑥𝑖

new)                                                              (13) 

 The update rule for each individual can be described as: 

      𝑥𝑖 = {
𝑥𝑖

new if 𝑓𝑖
new < 𝑓𝑖

𝑥𝑖 otherwise
                                                         (14) 

 If the new fitness 𝑓𝑖
𝑛𝑒𝑤 is better (i.e., lower for a minimization problem) than the previous 

fitness 𝑓𝑖  the individual’s position is updated to 𝑥𝑖
𝑛𝑒𝑤  . Otherwise, the previous position 𝑥𝑖  is 

retained. The Elite Pool 𝐸 is updated at each iteration to ensure it contains the best solutions found 

so far. This pool plays a crucial role in guiding the population toward the best exits identified during 

the simulation. 

3.8 Computational Complexity 

 In this section, we describe the general computational complexity of the ESC (Escape) 

algorithm. The computational complexity of ESC primarily depends on two components: the 

initialization of the population and the main iterative process of the algorithm, which includes 

calculating the fitness functions, sorting, and updating the solutions. Assume that the number of 

search agents is 𝑁, 𝑇  denotes the maximum number of iterations, and 𝐷 represents the 

dimensionality of the problem. The computational complexity of initializing the population, where 

each individual is represented by a 𝐷-dimensional vector, is 𝑂(𝑁 × 𝐷) . The fitness evaluation for 

the entire population also requires 𝑂(𝑁 × 𝐷) operations. Sorting the population by fitness values is 

performed using a comparison-based sorting algorithm, which has a complexity of 𝑂(𝑁 × 𝑙𝑜𝑔𝑁) . 



During the main iterative process, the algorithm runs for 𝑇  iterations. In each iteration, the 

population is divided into calm, herding, and panic groups, and the positions of individuals in each 

group are updated according to different rules. The complexity for updating positions is 𝑂(𝑁 × 𝐷) , 

and fitness reevaluation adds another 𝑂(𝑁 × 𝐷)  , and fitness reevaluation adds another 

𝑂(𝑁 × 𝑙𝑜𝑔𝑁) time. Thus, the total complexity per iteration is 𝑂(𝑁 × 𝐷 +𝑁𝑙𝑜𝑔𝑁) . Consequently, 

the overall computational complexity of the ESC algorithm is 𝑂(𝑇 × 𝑁 × (𝐷 + 𝑙𝑜𝑔𝑁)). 

 Next, we will compare the complexities of the ESC with the Slime Mould Algorithm (SMA)[62] 

and HHO [61] based on the calculation methods from their original papers. To ensure consistency 

in our analysis, we merged some computational items when evaluating the complexities of SMA 

and HHO, in line with their original descriptions. For the SMA algorithm, the overall complexity is 

𝑂(𝑇 × 𝑁 × (𝐷 + 𝑙𝑜𝑔𝑁)) . This reflects the detailed handling of fitness evaluations and position 

updates in SMA, as well as the sorting and weight adjustments involved in each iteration. The 

complexity of the HHO algorithm is 𝑂(𝑇 × 𝑁 ×𝐷)  , mainly covering initialization, fitness 

evaluation, and position updates, without significant logarithmic terms. This indicates that the HHO 

algorithm focuses on direct position updates during each iteration, involving fewer sorting or other 

complex operations. 

 Overall, the complexity of the ESC algorithm is 𝑂(𝑇 × 𝑁 × (𝐷 + 𝑙𝑜𝑔𝑁)) , indicating that it 

performs fitness evaluations and position updates and also includes comparison-based sorting 

operations in each iteration, potentially making it more effective in handling structured optimization 

problems. ESC and SMA incorporate additional structured elements like sorting and weight updates, 

making them particularly suitable for complex optimization environments requiring these 

operations. Meanwhile, HHO, with its more streamlined iterative update strategy, is better suited for 

fast response and adaptation in dynamic optimization scenarios. Fig 6 shows the flowchart of ESC. 

  

          



 

                                              Fig. 6   Flowchart of the escape (ESC) algorithm 

Algorithm 1. Pseudocode of escape optimization algorithm (ESC) 

1: Initialize ESC parameters 

2: Initialize Population: 

3: for each individual xi do 

4:        for each dimension j do 

5:                Set xi,j = lbj + rj × (ubj − lbj ) where rj ∼ U (0, 1) 

6:        end for 

7: end for 

8: Evaluate fitness of each individual fi = f (xi) 

9: Sort population by fitness in ascending order 

10: Store the top eliteSize individuals in the Elite Pool: 

E = {x1, x2, . . . , xeliteSize} 

11: while t ≤ T do 

12:       if t/T ≤ 0.5 then 

13:         Compute Panic Index P (t) = cos (πt/6T) 

14:         Sort population by fitness 

15:         Divide population into: Calm group (proportion c), Conforming group (proportion h), 

and          

              Panic group (proportion p) 

16:          Update Calm Group using Eq. (4) 

17:          Update Conforming Group using Eq. (6) 

18:          Update Panic Group using Eq. (8) 

19:      else 

20:           ► Enter exploitation phase 

21:           Update population using Eq. (10) 

22:      end if 

23:     Evaluate the fitness of each individual 

24:     Apply greedy selection (Eq. 12) 

25:     Update Elite Pool with best solutions found 



26:     t = t + 1 

27: end while 

28: Return Best Solutions from Elite Pool 

 

4. Experimental Results and Discussions 

In this section, we assess the performance of the ESC across multiple benchmark test suites. 

We conducted convergence behavior analyses to confirm ESC's effectiveness and compared its 

numerical results with those of other leading algorithms. Furthermore, we showcased ESC's 

scalability by applying it to large-scale global optimization problems. Finally, we utilized two 

nonparametric tests—the Wilcoxon rank sum test and the Friedman mean rank test—to evaluate the 

differences and overall performance of the competing algorithms. 

4.1 Benchmark Test Functions 

       As part of the study, CEC 2017 [63](Dim=10,30,50,100), and CEC 2022[64] (Dim=10,20) test 

suites were used to evaluate the performance of the proposed ESC algorithm. We chose F1-F30 of CEC 

2017 and F1-F12 of CEC 2022 as a total of 42 test functions. Characteristics differentiate the function 

categories in these suites and uses: single-optimum unimodal functions gauge the speed and precision of 

an algorithm's optimization; multimodal types, with multiple optima, assess robustness; hybrid and 

composition functions test an algorithm's ability to solve complex problems by combining features of the 

first two.  An Intel Core i5-12400,2.50 GHz CPU,16 GB RAM were used on the MATLAB 2023a 

platform for the analysis. The number of iterations is set to 500, and the population size to 30.   

Table 2 Review the CEC 2017 test suite 

Type ID Description Dim 𝑓𝑚𝑖𝑛 

Unimodal CEC 2017-F1 Shifted and Rotated Bent Cigar Function 30/50/100 100 

 CEC 2017-F2 Shifted and Rotated Sum of Different Power Function 30/50/100 200 

 CEC 2017-F3 Shifted and Rotated Zakharov Function 30/50/100 300 

Multimodal CEC 2017-F4 Shifted and Rotated Rosenbrock’s Function 30/50/100 400 

 CEC 2017-F5 Shifted and Rotated Rastrigin’s Function 30/50/100 500 

 CEC 2017-F6 Shifted and Rotated Expanded Scaffer’s F6 Function 30/50/100 600 

 CEC 2017-F7 Shifted and Rotated Lunacek Bi_Rastrigin Function 30/50/100 700 

 CEC 2017-F8 Shifted and Rotated Non-Continuous Rastrigin’s Function 30/50/100 800 

 CEC 2017-F9 Shifted and Rotated Levy Function 30/50/100 900 

 CEC 2017-F10 Shifted and Rotated Schwefel’s Function 30/50/100 1000 

Hybrid CEC 2017-F11 Hybrid Function 1 (N=3) 30/50/100 1100 

 CEC 2017-F12 Hybrid Function 2 (N=3) 30/50/100 1200 

 CEC 2017-F13 Hybrid Function 3 (N=3) 30/50/100 1300 

 CEC 2017-F14 Hybrid Function 4 (N=4) 30/50/100 1400 

 CEC 2017-F15 Hybrid Function 5 (N=4) 30/50/100 1500 

 CEC 2017-F16 Hybrid Function 6 (N=4) 30/50/100 1600 

 CEC 2017-F17 Hybrid Function 6 (N=5) 30/50/100 1700 

 CEC 2017-F18 Hybrid Function 6 (N=5) 30/50/100 1800 

 CEC 2017-F19 Hybrid Function 6 (N=5) 30/50/100 1900 

 CEC 2017-F20 Hybrid Function 6 (N=6) 30/50/100 2000 

Composition CEC 2017-F21 Composition Function 1 (N=5) 30/50/100 2100 

 CEC 2017-F22 Composition Function 2 (N=5) 30/50/100 2200 

 CEC 2017-F23 Composition Function 3 (N=5) 30/50/100 2300 



 CEC 2017-F24 Composition Function 4 (N=5) 30/50/100 2400 

 CEC 2017-F25 Composition Function 5 (N=3) 30/50/100 2500 

 CEC 2017-F26 Composition Function 6 (N=3) 30/50/100 2600 

 CEC 2017-F27 Composition Function 7 (N=5) 30/50/100 2700 

 CEC 2017-F28 Composition Function 8 (N=5) 30/50/100 2800 

 CEC 2017-F29 Composition Function 9 (N=5) 30/50/100 2900 

 CEC 2017-F30 Composition Function 10 (N=3) 30/50/100 3000 

Search Range: [-100,100] 

Table 3 Review the CEC 2022 test suite 

Type ID Description Dim 𝑓𝑚𝑖𝑛 

Unimodal Function CEC 2022-F1 Shifted and full Rotated Zakharov Function 10/20 300 

Basic Functions CEC 2022-F2 Shifted and full Rotated Zakharov Function 10/20 400 

 CEC 2022-F3 Shifted and full Rotated Expanded Schaffer’s f6 Function 10/20 600 

 CEC 2022-F4 Shifted and full Rotated Non-Continuous Rastrigin’s Function 10/20 800 

 CEC 2022-F5 Shifted and full Rotated Levy Function 10/20 900 

Hybrid Functions CEC 2022-F6 Hybrid Function 1 (N = 3) 10/20 1800 

 CEC 2022-F7 Hybrid Function 2 (N = 6) 10/20 2000 

 CEC 2022-F8 Hybrid Function 3 (N = 5) 10/20 2200 

Composition Functions CEC 2022-F9 Composition Function 1 (N = 5) 10/20 2300 

 CEC 2022-F10 Composition Function 2 (N = 4) 10/20 2400 

 CEC 2022-F11 Composition Function 3 (N = 5) 10/20 2600 

 CEC 2022-F12 Composition Function 4 (N = 6) 10/20 2700 

Search Range: [-100,100] 

 

4.2 Competitor Algorithms and Parameters Setting 

      We compare the results of with 12 other algorithms, namely Memory, evolutionary operator, and local 

search based improved Grey Wolf Optimizer (MELGWO)[65], Gaussian quantum-behaved particle 

swarm optimization (GQPSO)[66], improved dung beetle optimizer (IDBO) [67], Dominant Swarm with 

Adaptive T-distribution Mutation-based Slime Mould Algorithm (DTSMA) [68], constriction 

coefficient-based particle swarm optimization and gravitational search algorithm (CPSOGSA) [69], 

Whale Optimization Algorithm (WOA) [70], Sine Cosine Algorithm (SCA) [71], HHO[61], Crayfish 

Optimization Algorithm (COA) [72], Chernobyl Disaster Optimizer (CDO) [53], Optical Microscope 

Algorithm (OMA) [73], Spider Wasp Optimizer (SWO) [74]. The parameter Settings for the algorithms 

used for comparison are shown in Table 4. In the experiment, the population size 𝑁 for each algorithm 

is set to 30, and the maximum number of iterations 𝑇 is set to 500. The algorithm terminates when the 

maximum number of iterations 𝑇 is reached. 

 

Table 4 Parameter settings of the chosen algorithms. 

Algorithms Name of the parameter Value of the parameter N T 

MELGWO 𝜃, 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟, Stochastic Local Search 2 to 0,0.6,0.5 30 500 

GQPSO 𝑤1, 𝑤2, 𝑐1, 𝑐2 0.5,1,1.5,1.5 30 500 

IDBO 𝑘, 𝜆, 𝑏, 𝑆 0.1,0.1,0.3,0.5 30 500 

DTSMA 𝑧, 𝑞 0.03,0.9 30 500 

CPSOGSA 𝜑1, 𝜑2 2.05,2.05 30 500 

WOA 𝑎 2 30 500 

SCA 𝑎 2 30 500 

HHO 𝐸0 [-1,1]
 

30 500 

COA  𝐶1, 𝐶3, 𝜇, 𝜎 0.2,3,25,3 30 500 



CDO 𝛼, 𝛽, 𝛾 16000,270000,300000 30 500 

OMA 𝑁𝑜𝑛𝑒 None 30 500 

SWO 𝑇𝑅, 𝐶𝑅 0.3,0.2 30 500 

ESC   𝛽𝑏𝑎𝑠𝑒, 𝑐, ℎ, 𝑝, 𝑒𝑥𝑖𝑠𝑡 0.15,0.15,0.35,0.5,3 30 500 

 

4.3 Analysis of the Convergence Behavior 

       To illustrate the effectiveness of ESC, we exhibit their convergence properties in Fig.7. This figure 

includes a set of 6 visuals, each depicting outcomes for various benchmark tests. We selected three tests 

from the CEC 2017 suite and three from the CEC 2022 suite. In each image, the first column depicts the 

2D landscape of the benchmark function, while the second column highlights the search agent's final 

location. A red dot marks the optimal solution. Observations from these images reveal that, although 

search agents are spread across the entire parameter space, they predominantly cluster near the optimal 

solution. This clustering underscores the impressive capability of the ESC in both exploring and 

exploiting the search space. 

Furthermore, the third column of the figure showcases the evolution of the average fitness value 

across iterations. Initially, this average fitness value is quite elevated, but it steadily decreases and 

stabilizes after about 100 iterations, demonstrating the rapid convergence capabilities of the ESC. The 

fourth column visually presents the trajectory of the search agent within the first dimension. Here, notable 

variations are evident in the early stages of iterations, which diminish as the count approaches 100. This 

pattern indicates the ESC’s robustness in sidestepping local optima and effectively achieving global 

optimization.   

The final column displays the convergence curve. This curve is notably smooth for unimodal 

functions, signifying that optimal values are attainable via iterative procedures. In contrast, for 

multimodal functions characterized by numerous local optima, the search process necessitates ongoing 

avoidance of these local peaks to reach global optima. This is reflected in the distinctly stepped 

appearance of the convergence curve in these cases. In conclusion, ESC has obvious convergence. 

 

 



 

 

 

 

Fig.7 Convergence behaviors of ESC in the search process 

4.4 Quantitative Evaluation 

4.4.1 Comparison with other competitive algorithms on CEC 2017 

In this section, we will detail the performance results of the ESC algorithm against 12 competing 

methods and evaluate them on 10, 30, 50, and 100 dimensions using the CEC 2017 benchmark suite. 

This check records the mean value (Ave) and standard deviation (Std) of each algorithm based on 30 

independent experiments, as shown in Table 5, 6, 7 and 8. A key aspect of our analysis focuses on the 

algorithm's convergence rate, comparing the iteration progress of different algorithms. As shown in Fig. 

8, the ESC algorithm converges significantly faster than most other algorithms. 

In addition, to evaluate the stability of the algorithm, Fig.9 provides a boxplot analysis of the ESC 

and its comparison algorithm. The ESC algorithm shows a small variance, indicating its stability. In 

addition, Fig.10 aims to visually represent the efficiency of different algorithms in solving optimization 

problems for various functions using the Friedman average ranking as a comparative metric. 

In the CEC 2017 benchmark tests, the ESC demonstrated strong performance across various 

dimensions. It achieved top rankings in the Friedman mean ranking, securing first place in the 10 and 30 

dimensions, second in the 50 dimensions, and maintaining second in the 100 dimensions. This highlights 

ESC's capability to handle multi-dimensional optimization problems. A detailed comparison between 

ESC and other algorithms shows that ESC outperformed major competitors such as MELGWO, GQPSO, 



and IDBO in the 10-dimensional test. In the 30-dimensional tests, ESC outperformed MELGWO on 26 

functions, only slightly trailing on 2 functions. In the 50 and 100-dimensional scenarios, although 

MELGWO showed marginally better performance on some functions as the dimensionality increased, 

ESC maintained a significant advantage overall. Compared to IDBO, ESC demonstrated stable 

performance in the 30 and 50 dimensions, consistently maintaining its lead. However, in the 100-

dimensional test, while IDBO showed strength in certain functions, ESC still held an overall advantage. 

Notably, the DTSMA algorithm closely competed with ESC, particularly in the 100-dimensional scenario 

where their performances were very close. DTSMA managed to outperform ESC on several functions, 

but ESC excelled on an equal number, indicating its robustness in handling high-dimensional problems. 

In contrast, algorithms like GQPSO and SCA posed no significant threat to ESC across all dimensions, 

with ESC consistently outperforming these algorithms on most functions. GQPSO consistently ranked 

lower, showing poor performance on most functions, while SCA, despite some success in lower-

dimensional problems, lagged behind ESC overall. CPSOGSA, WOA, and HHO exhibited moderate 

performance in the medium and high-dimensional tests. CPSOGSA struggled to significantly outperform 

ESC in the 50 and 100 dimensions, particularly facing challenges with higher-dimensional problems. 

WOA and HHO showed average performance in lower-dimensional problems, with HHO's performance 

improving slightly as the dimensionality increased, yet they still did not pose a challenge to ESC.COA 

performed comparably to ESC in the 30 and 50-dimensional tests, especially in medium dimensions 

where it showed good performance. However, in the high-dimensional 100-dimensional problems, 

COA's limitations became apparent, with its performance clearly inferior to ESC. OMA performed well 

in the 30 and 50-dimensional tests, approaching ESC's level, but in the high-dimensional 100-

dimensional problems, ESC maintained a significant lead. CDO and SWO consistently performed poorly 

across all dimensions, particularly in high-dimensional tests where both algorithms ranked low in the 

Friedman mean ranking, highlighting their inadequacies in handling complex multi-dimensional 

optimization problems. In comparison, ESC significantly outperformed these algorithms on almost all 

functions. 

The analysis of the iteration curves in Fig. 8 shows that the ESC algorithm's convergence speed 

was superior to other algorithms in most cases, particularly during the early stages of iteration, where 

ESC's convergence speed was notably faster than its competitors. The boxplot in Fig. 9 illustrates 

that the ESC algorithm exhibited low variance, indicating more stable results across different 

experiments. Despite some slight disadvantages in specific high-dimensional functions, the overall 

ranking and convergence efficiency still highlight ESC as the most outstanding algorithm. 

However, the ESC algorithm does have some limitations. As the problem dimensionality 

increases, ESC's performance on certain functions becomes less prominent, especially in the 100-

dimensional scenarios where its competition with DTSMA becomes more intense. While ESC 

performs well on most functions, it sometimes shows a lack of adaptability to certain complex 

functions in high-dimensional problems, leading to slightly inferior performance compared to 

DTSMA on these specific functions. Additionally, ESC's performance advantage is most apparent 

in lower and medium-dimensional problems, but this advantage diminishes as the dimensionality 



increases. This is a crucial area for future improvements to the ESC algorithm. 

 

  

  

  

  

Fig.8 Comparison of iteration curves of different algorithms on CEC 2017 test suite 



  

  

  

  

Fig. 9 Comparison of boxplot of different algorithms on CEC 2017 test suite 



 

 

 

 

Fig.10 Average Friedman ranking of different algorithms on the CEC 2017 test suite 



Table 5 Experimental results of 13 algorithms on the CEC 2017(Dim=10) 

ID index MELGWO GQPSO IDBO DTSMA CPSOGSA WOA SCA HHO COA CDO OMA SWO ESC 

F1 Ave 4.655E+03 4.409E+09 2.899E+06 6.147E+03 4.501E+07 6.106E+07 1.106E+09 2.594E+06 7.068E+03 1.396E+10 5.732E+04 2.898E+09 1.248E+03 

 Std 4.066E+05 9.645E+05 8.485E+05 3.515E+05 9.381E+05 1.778E+06 2.064E+06 2.806E+06 5.331E+05 4.549E+05 1.888E+05 1.080E+07 2.441E+05 

F2 Ave 3.270E+03 1.603E+09 9.567E+06 2.073E+02 2.912E+09 2.305E+07 1.998E+08 5.739E+06 2.175E+03 5.961E+07 3.306E+05 3.914E+09 1.559E+03 

 Std 5.973E+03 1.592E+09 5.002E+07 3.344E+01 1.454E+10 3.930E+07 4.528E+08 1.259E+07 5.533E+03 1.125E+07 1.781E+06 7.184E+09 2.898E+03 

F3 Ave 3.031E+02 5.337E+03 3.407E+02 3.028E+02 1.727E+04 7.789E+03 3.415E+03 7.973E+02 2.472E+03 1.798E+04 3.445E+02 1.199E+04 5.752E+02 

 Std 5.708E+00 9.851E+02 1.036E+02 6.797E+00 2.052E+04 5.489E+03 1.615E+03 5.009E+02 1.724E+03 2.314E+02 5.484E+01 4.387E+03 3.900E+02 

F4 Ave 4.057E+02 5.346E+02 4.309E+02 4.132E+02 4.422E+02 4.530E+02 4.619E+02 4.286E+02 4.170E+02 1.414E+03 4.049E+02 6.257E+02 4.064E+02 

 Std 2.775E+00 2.563E+01 3.994E+01 2.217E+01 4.544E+01 5.763E+01 3.487E+01 3.575E+01 2.531E+01 3.062E+02 2.406E+00 1.204E+02 5.799E-01 

F5 Ave 4.057E+02 5.346E+02 4.309E+02 4.132E+02 4.422E+02 4.530E+02 4.619E+02 4.286E+02 4.170E+02 1.414E+03 4.049E+02 6.257E+02 4.064E+02 

 Std 1.094E+01 6.921E+00 1.371E+01 8.130E+00 1.558E+01 2.292E+01 7.342E+00 1.984E+01 1.461E+01 7.755E+00 8.219E+00 1.849E+01 2.963E+00 

F6 Ave 6.086E+02 6.363E+02 6.063E+02 6.002E+02 6.299E+02 6.364E+02 6.235E+02 6.405E+02 6.051E+02 6.399E+02 6.004E+02 6.397E+02 6.000E+02 

 Std 7.247E+00 4.101E+00 4.109E+00 2.197E-01 1.983E+01 1.190E+01 5.220E+00 1.140E+01 8.395E+00 4.048E+00 5.122E-01 1.316E+01 5.275E-05 

F7 Ave 7.328E+02 7.898E+02 7.431E+02 7.304E+02 7.712E+02 7.879E+02 7.839E+02 7.920E+02 7.813E+02 7.972E+02 7.541E+02 8.211E+02 7.191E+02 

 Std 1.246E+01 6.265E+00 1.331E+01 8.403E+00 4.118E+01 2.493E+01 1.453E+01 2.465E+01 2.272E+01 7.443E+00 1.284E+01 3.005E+01 2.719E+00 

F8 Ave 8.208E+02 8.447E+02 8.242E+02 8.178E+02 8.457E+02 8.484E+02 8.496E+02 8.293E+02 8.307E+02 8.540E+02 8.217E+02 8.671E+02 8.064E+02 

 Std 8.713E+00 5.069E+00 9.297E+00 5.742E+00 1.786E+01 1.916E+01 7.867E+00 1.045E+01 5.376E+00 7.419E+00 6.777E+00 1.250E+01 2.080E+00 

F9 Ave 1.004E+03 1.172E+03 9.665E+02 9.008E+02 1.738E+03 1.600E+03 1.062E+03 1.574E+03 1.030E+03 1.334E+03 9.079E+02 1.627E+03 9.000E+02 

 Std 1.609E+02 4.672E+01 6.460E+01 1.952E+00 5.036E+02 4.002E+02 6.865E+01 2.647E+02 1.918E+02 6.144E+01 2.105E+01 3.962E+02 3.174E-07 

F10 Ave 1.004E+03 1.172E+03 9.665E+02 9.008E+02 1.738E+03 1.600E+03 1.062E+03 1.574E+03 1.030E+03 1.334E+03 9.079E+02 1.627E+03 9.000E+02 

 Std 3.187E+02 2.035E+02 4.104E+02 2.107E+02 4.247E+02 2.648E+02 2.445E+02 2.672E+02 3.280E+02 2.073E+02 1.943E+02 2.153E+02 2.408E+02 

F11 Ave 1.004E+03 1.172E+03 9.665E+02 9.008E+02 1.738E+03 1.600E+03 1.062E+03 1.574E+03 1.030E+03 1.334E+03 9.079E+02 1.627E+03 9.000E+02 

 Std 3.734E+01 7.473E+01 1.192E+02 4.397E+01 1.056E+02 8.234E+01 9.200E+01 6.316E+01 4.631E+01 5.497E+02 1.292E+01 6.009E+02 5.677E+00 

F12 Ave 5.773E+05 2.807E+07 2.314E+06 6.156E+04 1.292E+06 4.961E+06 2.173E+07 5.781E+06 5.760E+04 8.392E+06 1.230E+04 4.858E+07 2.167E+04 

 Std 3.734E+01 7.473E+01 1.192E+02 4.397E+01 1.056E+02 8.234E+01 9.200E+01 6.316E+01 4.631E+01 5.497E+02 1.292E+01 6.009E+02 5.677E+00 

F13 Ave 9.066E+03 5.684E+05 1.380E+04 1.334E+04 1.290E+04 1.627E+04 6.223E+04 1.198E+04 7.173E+03 8.130E+07 4.853E+03 9.577E+05 8.326E+03 

 Std 7.123E+03 5.219E+05 1.280E+04 1.349E+04 1.082E+04 1.232E+04 4.212E+04 8.317E+03 5.956E+03 4.872E+07 3.152E+03 1.635E+06 6.721E+03 

F14 Ave 1.554E+03 4.510E+03 2.068E+03 3.112E+03 6.623E+03 2.904E+03 2.346E+03 2.121E+03 1.751E+03 2.163E+03 1.483E+03 1.482E+04 3.804E+03 

 Std 1.348E+02 1.730E+03 6.593E+02 2.406E+03 5.108E+03 1.733E+03 1.158E+03 9.297E+02 3.491E+02 6.984E+02 2.936E+01 2.729E+04 3.984E+03 

F15 Ave 4.198E+03 6.537E+03 2.477E+03 3.002E+03 8.493E+03 9.078E+03 3.528E+03 8.269E+03 2.711E+03 6.571E+03 2.196E+03 2.374E+04 2.529E+03 

 Std 1.348E+02 1.730E+03 6.593E+02 2.406E+03 5.108E+03 1.733E+03 1.158E+03 9.297E+02 3.491E+02 6.984E+02 2.936E+01 2.729E+04 3.984E+03 

F16 Ave 1.759E+03 2.002E+03 1.747E+03 1.670E+03 1.952E+03 1.994E+03 1.793E+03 1.942E+03 1.690E+03 2.080E+03 1.650E+03 2.152E+03 1.630E+03 

 Std 1.044E+02 5.368E+01 1.114E+02 7.809E+01 1.921E+02 1.683E+02 8.312E+01 1.183E+02 7.736E+01 4.467E+01 5.609E+01 1.281E+02 4.586E+01 



F17 Ave 1.764E+03 1.800E+03 1.757E+03 1.728E+03 1.852E+03 1.820E+03 1.796E+03 1.794E+03 1.755E+03 1.861E+03 1.755E+03 1.898E+03 1.710E+03 

 Std 3.714E+01 1.365E+01 2.023E+01 1.299E+01 1.025E+02 5.741E+01 1.835E+01 5.169E+01 3.267E+01 4.317E+01 1.233E+01 8.994E+01 9.552E+00 

F18 Ave 1.764E+03 1.800E+03 1.757E+03 1.728E+03 1.852E+03 1.820E+03 1.796E+03 1.794E+03 1.755E+03 1.861E+03 1.755E+03 1.898E+03 1.710E+03 

 Std 1.182E+04 1.056E+06 1.082E+04 1.313E+04 1.475E+04 1.082E+04 2.681E+05 1.103E+04 9.889E+03 1.015E+09 2.167E+03 6.837E+06 1.000E+04 

F19 Ave 7.222E+03 1.137E+05 1.168E+04 9.390E+03 1.643E+04 1.699E+05 1.008E+04 2.061E+04 4.180E+03 1.332E+06 2.586E+03 4.160E+04 6.647E+03 

 Std 6.986E+03 1.130E+05 9.645E+03 7.582E+03 1.633E+04 3.153E+05 8.276E+03 2.635E+04 3.675E+03 4.046E+05 1.161E+03 5.169E+04 7.082E+03 

F20 Ave 2.111E+03 2.212E+03 2.088E+03 2.017E+03 2.193E+03 2.222E+03 2.124E+03 2.202E+03 2.050E+03 2.220E+03 2.048E+03 2.222E+03 2.004E+03 

 Std 6.594E+01 4.708E+01 5.409E+01 1.129E+01 8.888E+01 8.517E+01 4.231E+01 8.565E+01 5.257E+01 5.680E+01 1.246E+01 7.571E+01 7.710E+00 

F21 Ave 2.319E+03 2.253E+03 2.229E+03 2.258E+03 2.328E+03 2.338E+03 2.294E+03 2.328E+03 2.310E+03 2.370E+03 2.284E+03 2.354E+03 2.304E+03 

 Std 2.374E+01 2.473E+01 4.809E+01 6.185E+01 5.596E+01 4.265E+01 6.665E+01 6.043E+01 3.759E+01 6.668E+00 4.825E+01 4.356E+01 2.508E+01 

F22 Ave 2.301E+03 2.557E+03 2.310E+03 2.298E+03 2.433E+03 2.444E+03 2.389E+03 2.316E+03 2.301E+03 3.206E+03 2.304E+03 2.582E+03 2.300E+03 

 Std 1.613E+01 4.346E+01 1.471E+01 1.793E+01 3.862E+02 3.756E+02 3.766E+01 5.690E+00 1.475E+01 4.754E+02 2.659E+00 2.166E+02 3.179E-01 

F23 Ave 2.623E+03 2.699E+03 2.648E+03 2.619E+03 2.655E+03 2.656E+03 2.663E+03 2.674E+03 2.623E+03 2.884E+03 2.648E+03 2.701E+03 2.609E+03 

 Std 1.360E+01 6.600E+00 1.540E+01 6.047E+00 1.945E+01 2.004E+01 8.523E+00 3.415E+01 8.584E+00 7.622E+01 3.014E+01 1.878E+01 2.556E+00 

F24 Ave 2.743E+03 2.696E+03 2.727E+03 2.740E+03 2.781E+03 2.764E+03 2.783E+03 2.792E+03 2.754E+03 2.916E+03 2.716E+03 2.800E+03 2.741E+03 

 Std 4.781E+01 6.284E+01 8.453E+01 4.606E+01 2.970E+01 6.347E+01 3.974E+01 1.045E+02 7.767E+00 2.430E+01 6.355E+01 6.396E+01 3.298E+00 

F25 Ave 2.937E+03 3.134E+03 2.944E+03 2.929E+03 2.947E+03 2.949E+03 2.973E+03 2.944E+03 2.922E+03 3.593E+03 2.915E+03 3.138E+03 2.934E+03 

 Std 2.665E+01 2.626E+01 3.198E+01 2.377E+01 7.845E+01 6.724E+01 2.318E+01 3.163E+01 6.399E+01 7.167E+01 6.278E+01 1.446E+02 2.192E+01 

F26 Ave 3.143E+03 3.590E+03 3.014E+03 2.951E+03 3.376E+03 3.629E+03 3.123E+03 3.585E+03 3.316E+03 4.089E+03 2.975E+03 3.575E+03 3.013E+03 

 Std 

3.583E+02 1.266E+02 9.247E+01 5.401E+01 5.647E+02 6.126E+02 

3.727E+

01 5.319E+02 4.889E+02 2.462E+02 1.421E+02 3.510E+02 2.845E+02 

F27 Ave 3.106E+03 3.194E+03 3.111E+03 3.091E+03 3.146E+03 3.141E+03 3.107E+03 3.188E+03 3.108E+03 3.291E+03 3.102E+03 3.187E+03 3.093E+03 

 Std 2.550E+01 1.470E+01 2.574E+01 2.486E+00 3.696E+01 3.806E+01 3.187E+00 4.903E+01 2.522E+01 2.353E+01 6.729E+00 3.563E+01 3.313E+00 

F28 Ave 3.332E+03 3.661E+03 3.353E+03 3.279E+03 3.359E+03 3.480E+03 3.306E+03 3.403E+03 3.332E+03 3.602E+03 3.257E+03 3.553E+03 3.353E+03 

 Std 1.380E+02 3.842E+01 1.308E+02 1.368E+02 1.337E+02 1.832E+02 7.335E+01 1.480E+02 1.387E+02 2.252E+00 1.314E+02 1.084E+02 1.021E+02 

F29 Ave 3.259E+03 3.325E+03 3.241E+03 3.194E+03 3.348E+03 3.368E+03 3.274E+03 3.361E+03 3.225E+03 3.391E+03 3.208E+03 3.434E+03 3.167E+03 

 Std 7.697E+01 4.193E+01 5.912E+01 4.950E+01 8.633E+01 9.064E+01 6.730E+01 1.004E+02 4.937E+01 7.640E+01 2.638E+01 9.926E+01 1.465E+01 

F30 Ave 4.066E+05 9.645E+05 8.485E+05 3.515E+05 9.381E+05 1.778E+06 2.064E+06 2.806E+06 5.331E+05 4.549E+05 1.888E+05 1.080E+07 2.441E+05 

 Std 5.946E+05 4.053E+05 1.281E+06 4.564E+05 1.664E+06 2.026E+06 1.224E+06 3.208E+06 5.762E+05 2.162E+05 3.667E+05 8.906E+06 3.443E+05 

 

 

 

 



Table 6 Experimental results of 13 algorithms on the CEC 2017(Dim=30) 

ID index MELGWO GQPSO IDBO DTSMA CPSOGSA WOA SCA HHO COA CDO OMA SWO ESC 

F1 Ave 1.725E+09 3.014E+10 1.127E+08 6.701E+06 4.752E+09 5.484E+09 2.327E+10 3.938E+08 1.133E+09 5.275E+10 1.893E+09 3.671E+10 3.511E+05 

 Std 1.475E+09 2.272E+09 1.726E+08 1.444E+07 5.762E+09 2.270E+09 4.443E+09 2.463E+08 1.912E+09 3.210E+08 9.962E+08 9.464E+09 1.783E+06 

F2 Ave 4.206E+31 6.259E+38 7.319E+33 2.992E+21 7.110E+41 5.277E+37 1.903E+38 5.576E+33 1.605E+27 5.376E+39 7.319E+28 4.427E+44 9.259E+25 

 Std 1.469E+32 1.184E+39 3.414E+34 1.120E+22 3.869E+42 2.881E+38 6.476E+38 2.932E+34 8.471E+27 7.560E+39 3.671E+29 2.413E+45 4.664E+26 

F3 Ave 4.453E+04 7.596E+04 6.742E+04 4.730E+04 2.487E+05 2.742E+05 8.983E+04 5.655E+04 1.249E+05 9.075E+04 6.928E+04 1.352E+05 9.055E+04 

 Std 1.062E+04 5.575E+03 8.276E+03 1.438E+04 7.046E+04 7.152E+04 1.876E+04 7.179E+03 4.325E+04 4.307E+03 1.709E+04 4.557E+04 2.881E+04 

F4 Ave 6.556E+02 5.937E+03 5.514E+02 5.159E+02 1.171E+03 1.275E+03 2.927E+03 7.114E+02 6.268E+02 5.500E+03 8.265E+02 1.017E+04 5.251E+02 

 Std 1.380E+02 3.280E+02 3.954E+01 2.470E+01 4.571E+02 2.991E+02 8.088E+02 8.375E+01 6.927E+01 1.249E+02 1.528E+02 3.195E+03 3.207E+01 

F5 Ave 6.757E+02 8.634E+02 6.870E+02 6.174E+02 8.080E+02 8.679E+02 8.280E+02 7.662E+02 7.328E+02 8.597E+02 7.161E+02 9.080E+02 6.016E+02 

 Std 3.584E+01 1.200E+01 4.014E+01 2.933E+01 5.800E+01 6.597E+01 2.262E+01 4.041E+01 5.594E+01 1.855E+01 3.344E+01 4.138E+01 2.631E+01 

F6 Ave 6.451E+02 6.753E+02 6.343E+02 6.136E+02 6.674E+02 6.816E+02 6.631E+02 6.675E+02 6.563E+02 6.777E+02 6.278E+02 6.869E+02 6.001E+02 

 Std 8.268E+00 3.390E+00 7.152E+00 7.516E+00 1.031E+01 1.233E+01 8.019E+00 4.299E+00 1.293E+01 6.005E+00 6.720E+00 7.422E+00 8.891E-02 

F7 Ave 1.043E+03 1.223E+03 9.642E+02 8.847E+02 1.729E+03 1.294E+03 1.251E+03 1.306E+03 1.210E+03 1.327E+03 1.168E+03 1.469E+03 8.531E+02 

 Std 9.878E+01 2.645E+01 9.297E+01 4.494E+01 2.490E+02 9.342E+01 5.964E+01 7.232E+01 1.194E+02 1.948E+01 8.007E+01 1.016E+02 1.895E+01 

F8 Ave 9.407E+02 1.090E+03 9.464E+02 9.012E+02 1.061E+03 1.071E+03 1.098E+03 9.833E+02 9.773E+02 1.110E+03 9.789E+02 1.153E+03 8.951E+02 

 Std 2.803E+01 1.210E+01 4.014E+01 2.248E+01 5.197E+01 5.145E+01 2.447E+01 2.589E+01 2.501E+01 2.088E+01 3.034E+01 3.169E+01 2.332E+01 

F9 Ave 3.919E+03 8.573E+03 6.189E+03 3.423E+03 8.360E+03 1.113E+04 7.949E+03 8.554E+03 7.490E+03 1.026E+04 4.342E+03 1.410E+04 9.211E+02 

 Std 1.007E+03 8.422E+02 2.223E+03 1.405E+03 2.308E+03 3.930E+03 1.327E+03 1.110E+03 1.737E+03 1.030E+03 1.301E+03 2.651E+03 2.921E+01 

F10 Ave 5.354E+03 8.705E+03 7.953E+03 5.140E+03 5.319E+03 7.718E+03 8.924E+03 6.052E+03 6.268E+03 8.966E+03 8.397E+03 9.404E+03 7.203E+03 

 Std 6.945E+02 2.517E+02 1.100E+03 1.010E+03 6.587E+02 8.739E+02 3.168E+02 7.822E+02 9.231E+02 3.417E+02 6.507E+02 5.044E+02 4.521E+02 

F11 Ave 1.576E+03 5.126E+03 1.477E+03 1.340E+03 4.821E+03 8.772E+03 3.738E+03 1.569E+03 1.773E+03 4.641E+04 1.386E+03 7.900E+03 1.349E+03 

 Std 5.585E+02 5.839E+02 1.522E+02 5.250E+01 3.128E+03 2.718E+03 8.073E+02 1.546E+02 5.108E+02 7.877E+04 9.086E+01 2.662E+03 4.304E+02 

F12 Ave 5.583E+07 7.088E+09 1.607E+07 3.997E+06 3.358E+08 5.667E+08 2.684E+09 1.198E+08 1.260E+07 9.907E+09 1.677E+07 6.530E+09 2.974E+06 

 Std 1.098E+08 7.953E+08 2.556E+07 2.858E+06 7.631E+08 4.259E+08 6.308E+08 1.245E+08 8.493E+06 1.379E+08 1.409E+07 2.532E+09 3.659E+06 

F13 Ave 1.223E+05 4.289E+09 7.161E+06 2.763E+04 8.588E+07 1.366E+07 8.959E+08 1.170E+06 1.568E+05 2.509E+09 2.709E+05 3.057E+09 2.322E+04 

 Std 5.657E+04 9.769E+08 1.824E+07 2.686E+04 3.316E+08 2.809E+07 3.641E+08 1.106E+06 2.206E+05 1.317E+08 9.731E+05 1.598E+09 1.507E+04 

F14 Ave 2.023E+05 1.936E+06 2.778E+05 1.145E+05 1.970E+06 2.647E+06 8.814E+05 1.255E+06 4.517E+05 2.892E+06 2.267E+04 3.780E+06 3.139E+05 

 Std 2.051E+05 6.022E+05 3.444E+05 7.499E+04 1.954E+06 2.875E+06 8.864E+05 1.353E+06 5.497E+05 1.827E+05 2.256E+04 2.890E+06 3.818E+05 

F15 Ave 2.324E+04 1.277E+08 4.186E+04 2.147E+04 5.605E+04 5.421E+06 6.574E+07 1.345E+05 2.325E+04 6.520E+08 1.005E+04 3.059E+08 9.352E+03 

 Std 1.408E+04 5.376E+07 7.206E+04 1.505E+04 5.015E+04 4.477E+06 5.658E+07 9.205E+04 1.369E+04 3.834E+05 7.430E+03 2.769E+08 6.759E+03 

F16 Ave 2.760E+03 4.640E+03 3.345E+03 2.509E+03 3.311E+03 4.423E+03 4.087E+03 3.678E+03 2.993E+03 9.851E+03 3.401E+03 4.972E+03 2.533E+03 

 Std 3.456E+02 2.564E+02 3.919E+02 2.542E+02 4.241E+02 7.634E+02 2.433E+02 5.682E+02 4.010E+02 2.292E+03 1.993E+02 3.912E+02 2.386E+02 



F17 Ave 2.326E+03 3.126E+03 2.521E+03 2.296E+03 2.727E+03 2.809E+03 2.754E+03 2.727E+03 2.285E+03 2.093E+04 2.285E+03 3.289E+03 1.913E+03 

 Std 2.063E+02 1.710E+02 3.003E+02 2.568E+02 3.431E+02 2.888E+02 2.022E+02 3.610E+02 1.764E+02 1.540E+04 1.636E+02 3.966E+02 1.523E+02 

F18 Ave 1.575E+06 1.153E+07 2.825E+06 2.215E+06 3.256E+06 1.250E+07 1.415E+07 2.039E+06 2.423E+06 1.128E+07 3.043E+05 3.231E+07 1.244E+06 

 Std 2.441E+06 4.239E+06 4.509E+06 1.817E+06 3.324E+06 1.358E+07 8.974E+06 1.833E+06 2.478E+06 1.896E+06 4.122E+05 2.500E+07 1.924E+06 

F19 Ave 5.697E+04 1.329E+08 1.427E+05 2.537E+04 6.706E+04 1.623E+07 9.324E+07 1.797E+06 2.812E+04 1.461E+08 1.052E+04 3.403E+08 9.181E+03 

 Std 7.648E+04 4.357E+07 3.883E+05 1.941E+04 1.004E+05 1.889E+07 4.167E+07 1.753E+06 2.922E+04 9.637E+06 1.062E+04 3.138E+08 7.845E+03 

F20 Ave 2.543E+03 2.898E+03 2.669E+03 2.492E+03 2.953E+03 2.854E+03 3.018E+03 2.792E+03 2.641E+03 3.022E+03 2.639E+03 3.235E+03 2.239E+03 

 Std 1.679E+02 9.725E+01 1.812E+02 1.774E+02 2.721E+02 2.014E+02 1.494E+02 2.041E+02 2.583E+02 1.463E+02 1.400E+02 1.766E+02 1.283E+02 

F21 Ave 2.457E+03 2.634E+03 2.481E+03 2.413E+03 2.563E+03 2.651E+03 2.616E+03 2.588E+03 2.457E+03 2.644E+03 2.474E+03 2.684E+03 2.406E+03 

 Std 3.507E+01 1.386E+01 6.690E+01 2.438E+01 5.613E+01 7.377E+01 2.670E+01 5.108E+01 5.367E+01 2.275E+01 3.341E+01 4.378E+01 1.634E+01 

F22 Ave 5.754E+03 6.039E+03 2.769E+03 6.158E+03 6.987E+03 8.474E+03 9.414E+03 6.920E+03 3.661E+03 1.035E+04 2.873E+03 8.523E+03 4.283E+03 

 Std 1.714E+03 2.500E+02 1.460E+03 1.554E+03 1.078E+03 1.310E+03 2.103E+03 1.787E+03 2.286E+03 4.181E+02 4.426E+02 1.859E+03 2.855E+03 

F23 Ave 2.828E+03 3.284E+03 2.957E+03 2.758E+03 3.071E+03 3.173E+03 3.100E+03 3.308E+03 2.887E+03 3.751E+03 2.893E+03 3.325E+03 2.731E+03 

 Std 5.203E+01 5.225E+01 7.522E+01 2.700E+01 9.851E+01 1.160E+02 3.944E+01 1.462E+02 7.119E+01 7.752E+01 4.331E+01 8.630E+01 3.090E+01 

F24 Ave 2.983E+03 3.551E+03 3.119E+03 2.925E+03 3.220E+03 3.243E+03 3.259E+03 3.546E+03 3.020E+03 3.852E+03 3.095E+03 3.549E+03 2.940E+03 

 Std 4.802E+01 4.205E+01 6.696E+01 3.818E+01 1.011E+02 9.775E+01 3.962E+01 1.689E+02 6.245E+01 4.556E+01 5.228E+01 1.243E+02 2.168E+01 

F25 Ave 2.988E+03 3.543E+03 2.922E+03 2.921E+03 3.387E+03 3.241E+03 3.565E+03 3.014E+03 2.976E+03 3.623E+03 3.074E+03 4.873E+03 2.927E+03 

 Std 3.969E+01 1.007E+02 3.228E+01 2.683E+01 2.790E+02 7.879E+01 2.020E+02 3.656E+01 4.531E+01 3.051E+01 5.136E+01 8.662E+02 2.618E+01 

F26 Ave 5.919E+03 8.862E+03 5.854E+03 4.782E+03 7.867E+03 8.898E+03 7.862E+03 7.967E+03 6.072E+03 9.010E+03 6.489E+03 9.928E+03 4.348E+03 

 Std 8.665E+02 4.375E+02 1.141E+03 2.323E+02 1.070E+03 1.263E+03 4.701E+02 1.692E+03 1.475E+03 3.501E+02 6.640E+02 8.315E+02 3.044E+02 

F27 Ave 3.305E+03 3.930E+03 3.323E+03 3.226E+03 3.390E+03 3.521E+03 3.560E+03 3.614E+03 3.281E+03 3.670E+03 3.323E+03 4.006E+03 3.231E+03 

 Std 5.030E+01 1.167E+02 6.095E+01 1.328E+01 6.618E+01 1.462E+02 7.455E+01 2.106E+02 4.315E+01 4.891E+01 3.572E+01 2.667E+02 1.116E+01 

F28 Ave 3.473E+03 5.136E+03 3.319E+03 3.317E+03 4.141E+03 3.977E+03 4.540E+03 3.506E+03 3.371E+03 5.063E+03 3.614E+03 6.242E+03 3.336E+03 

 Std 1.666E+02 1.234E+02 5.912E+01 1.111E+02 6.348E+02 3.695E+02 4.770E+02 1.173E+02 4.626E+01 3.706E+01 1.443E+02 6.687E+02 4.501E+01 

F29 Ave 4.386E+03 5.559E+03 4.481E+03 3.949E+03 4.769E+03 5.305E+03 5.272E+03 5.117E+03 4.183E+03 6.545E+03 4.203E+03 6.033E+03 3.591E+03 

 Std 2.597E+02 2.346E+02 4.166E+02 1.711E+02 3.954E+02 4.677E+02 3.617E+02 5.636E+02 2.802E+02 3.138E+02 1.818E+02 6.735E+02 1.182E+02 

F30 Ave 2.398E+06 7.017E+08 3.276E+06 2.504E+04 4.499E+06 5.389E+07 2.162E+08 1.263E+07 9.953E+05 3.002E+09 2.859E+05 3.603E+08 4.698E+04 

 Std 1.993E+06 1.566E+08 5.948E+06 2.047E+04 5.531E+06 3.941E+07 7.210E+07 8.218E+06 7.362E+05 8.355E+08 2.674E+05 2.111E+08 4.582E+04 

  

  



Table 7 Experimental results of 13 algorithms on the CEC 2017(Dim=50) 

ID index MELGWO GQPSO IDBO DTSMA CPSOGSA WOA SCA HHO COA CDO OMA SWO ESC 

F1 Ave 1.392E+10 6.599E+10 1.725E+09 1.056E+09 3.110E+10 2.170E+10 6.880E+10 5.349E+09 1.205E+10 8.091E+10 1.696E+10 9.987E+10 3.192E+09 

 Std 5.538E+09 2.098E+09 1.557E+09 1.437E+09 1.537E+10 5.476E+09 8.029E+09 1.752E+09 5.606E+09 9.562E+08 4.520E+09 1.337E+10 2.729E+09 

F2 Ave 1.392E+10 6.599E+10 1.725E+09 1.056E+09 3.110E+10 2.170E+10 6.880E+10 5.349E+09 1.205E+10 8.091E+10 1.696E+10 9.987E+10 3.192E+09 

 Std 2.981E+58 1.310E+75 2.363E+60 1.401E+49 8.083E+77 1.404E+85 3.578E+73 1.769E+66 1.596E+58 3.383E+77 2.773E+57 1.207E+82 4.149E+56 

F3 Ave 1.284E+05 1.660E+05 2.194E+05 1.938E+05 4.237E+05 2.983E+05 2.155E+05 1.711E+05 3.367E+05 1.974E+05 1.670E+05 3.204E+05 2.288E+05 

 Std 1.987E+04 9.630E+03 3.520E+04 4.076E+04 9.948E+04 8.035E+04 4.461E+04 2.069E+04 6.946E+04 1.544E+04 3.081E+04 2.520E+05 3.798E+04 

F4 Ave 2.344E+03 1.635E+04 9.275E+02 6.647E+02 5.698E+03 4.821E+03 1.414E+04 1.898E+03 1.792E+03 2.232E+04 3.175E+03 2.639E+04 9.471E+02 

 Std 1.105E+03 1.384E+03 2.018E+02 6.038E+01 2.857E+03 1.518E+03 2.908E+03 4.797E+02 8.996E+02 4.828E+02 1.035E+03 5.975E+03 2.441E+02 

F5 Ave 8.414E+02 1.116E+03 8.665E+02 7.961E+02 1.062E+03 1.128E+03 1.135E+03 9.298E+02 8.951E+02 1.118E+03 9.490E+02 1.233E+03 7.251E+02 

 Std 5.571E+01 1.915E+01 8.312E+01 5.982E+01 9.225E+01 8.037E+01 4.089E+01 3.224E+01 2.866E+01 2.955E+01 6.955E+01 4.956E+01 5.534E+01 

F6 Ave 6.566E+02 6.905E+02 6.488E+02 6.327E+02 6.785E+02 6.987E+02 6.848E+02 6.797E+02 6.675E+02 6.930E+02 6.503E+02 7.026E+02 6.032E+02 

 Std 6.999E+00 2.956E+00 8.026E+00 9.740E+00 9.762E+00 1.186E+01 7.637E+00 4.958E+00 5.160E+00 4.870E+00 9.231E+00 9.206E+00 1.503E+00 

F7 Ave 1.438E+03 1.755E+03 1.344E+03 1.162E+03 3.240E+03 1.912E+03 1.866E+03 1.882E+03 1.752E+03 1.822E+03 1.788E+03 2.106E+03 1.056E+03 

 Std 1.319E+02 2.997E+01 1.385E+02 8.068E+01 4.264E+02 1.135E+02 8.768E+01 9.954E+01 9.924E+01 3.738E+01 1.415E+02 1.289E+02 4.313E+01 

F8 Ave 1.167E+03 1.395E+03 1.134E+03 1.063E+03 1.355E+03 1.391E+03 1.444E+03 1.235E+03 1.240E+03 1.508E+03 1.211E+03 1.549E+03 1.053E+03 

 Std 5.024E+01 1.846E+01 4.289E+01 4.439E+01 7.084E+01 7.910E+01 2.783E+01 3.418E+01 2.831E+01 2.611E+01 7.191E+01 6.105E+01 4.211E+01 

F9 Ave 1.222E+04 3.282E+04 2.828E+04 1.400E+04 2.323E+04 3.795E+04 3.243E+04 3.130E+04 2.869E+04 3.447E+04 2.019E+04 4.738E+04 2.316E+03 

 Std 2.924E+03 2.453E+03 8.758E+03 4.464E+03 4.577E+03 1.268E+04 5.027E+03 2.271E+03 6.129E+03 2.792E+03 4.522E+03 6.282E+03 7.461E+02 

F10 Ave 9.167E+03 1.482E+04 1.365E+04 9.773E+03 9.030E+03 1.328E+04 1.540E+04 1.061E+04 1.371E+04 1.564E+04 1.492E+04 1.625E+04 1.298E+04 

 Std 9.932E+02 4.145E+02 2.003E+03 1.184E+03 1.103E+03 1.195E+03 5.040E+02 8.414E+02 8.132E+02 4.045E+02 3.773E+02 6.636E+02 5.896E+02 

F11 Ave 4.471E+03 1.468E+04 2.998E+03 2.017E+03 2.773E+04 8.526E+03 1.297E+04 3.272E+03 5.553E+03 1.996E+04 3.564E+03 2.657E+04 2.974E+03 

 Std 1.897E+03 9.533E+02 1.178E+03 8.392E+02 1.495E+04 2.299E+03 3.047E+03 7.617E+02 2.598E+03 9.743E+02 1.322E+03 6.519E+03 1.558E+03 

F12 Ave 1.704E+09 4.222E+10 6.203E+08 3.137E+07 3.301E+09 4.077E+09 2.241E+10 1.181E+09 3.321E+08 5.630E+10 9.749E+08 4.139E+10 1.549E+08 

 Std 2.719E+09 3.606E+09 5.649E+08 2.051E+07 2.522E+09 1.334E+09 5.241E+09 8.483E+08 2.083E+08 4.613E+08 6.337E+08 1.139E+10 1.999E+08 

F13 Ave 3.860E+07 1.962E+10 8.132E+07 5.599E+04 4.359E+08 5.305E+08 7.154E+09 4.183E+07 1.881E+06 4.686E+10 5.847E+07 1.784E+10 5.388E+04 

 Std 7.783E+07 3.177E+09 1.214E+08 3.065E+04 7.547E+08 2.650E+08 2.923E+09 5.957E+07 1.973E+06 3.064E+09 7.421E+07 6.473E+09 2.754E+04 

F14 Ave 1.539E+06 2.163E+07 3.267E+06 6.331E+05 3.173E+06 6.293E+06 8.707E+06 6.930E+06 1.954E+06 7.251E+07 3.322E+05 3.576E+07 1.114E+06 

 Std 1.201E+06 5.419E+06 3.438E+06 5.828E+05 3.640E+06 4.692E+06 9.257E+06 5.059E+06 1.720E+06 6.512E+06 2.806E+05 2.515E+07 1.465E+06 

F15 Ave 2.467E+06 2.910E+09 1.417E+05 2.097E+04 1.411E+07 8.235E+07 1.058E+09 3.488E+06 1.089E+05 1.511E+10 1.285E+05 3.988E+09 1.232E+04 

 Std 1.032E+07 3.234E+08 1.584E+05 1.072E+04 7.635E+07 8.392E+07 2.368E+08 7.888E+06 7.978E+04 2.378E+09 2.249E+05 1.791E+09 6.209E+03 

F16 Ave 4.045E+03 6.594E+03 4.440E+03 3.422E+03 4.385E+03 6.594E+03 6.301E+03 5.064E+03 4.252E+03 9.601E+03 4.514E+03 7.717E+03 3.251E+03 



 Std 5.728E+02 3.401E+02 4.968E+02 5.625E+02 5.923E+02 9.341E+02 2.912E+0

2 

7.498E+02 4.893E+02 4.280E+02 5.179E+02 6.481E+02 3.735E+02 

F17 Ave 3.415E+03 5.685E+03 3.620E+03 3.310E+03 4.379E+03 4.694E+03 5.091E+03 3.814E+03 3.595E+03 8.873E+03 3.757E+03 8.202E+03 2.954E+03 

 Std 4.230E+02 4.109E+02 4.732E+02 3.954E+02 6.140E+02 6.517E+02 4.104E+02 4.028E+02 4.638E+02 3.821E+02 3.652E+02 3.565E+03 2.573E+02 

F18 Ave 4.839E+06 7.117E+07 7.915E+06 5.257E+06 1.395E+07 5.251E+07 5.819E+07 1.178E+07 7.219E+06 2.080E+08 2.203E+06 9.986E+07 7.502E+06 

 Std 4.914E+06 1.796E+07 7.535E+06 3.977E+06 1.819E+07 4.214E+07 3.161E+07 9.060E+06 4.655E+06 5.523E+06 1.901E+06 6.476E+07 7.945E+06 

F19 Ave 5.176E+05 1.350E+09 3.348E+06 2.004E+04 2.235E+08 1.567E+07 6.999E+08 2.507E+06 3.895E+05 1.911E+09 7.242E+04 1.789E+09 3.040E+04 

 Std 5.844E+05 3.714E+08 4.079E+06 1.641E+04 7.223E+08 1.303E+07 2.715E+08 2.349E+06 3.936E+05 3.202E+07 1.018E+05 1.075E+09 3.183E+04 

F20 Ave 3.312E+03 4.093E+03 3.734E+03 3.213E+03 3.907E+03 3.943E+03 4.339E+03 3.518E+03 3.737E+03 4.231E+03 3.959E+03 4.753E+03 3.198E+03 

 Std 3.307E+02 1.265E+02 4.322E+02 3.428E+02 3.379E+02 3.764E+02 2.080E+02 3.452E+02 2.846E+02 2.413E+02 1.732E+02 2.843E+02 2.848E+02 

F21 Ave 2.658E+03 2.987E+03 2.765E+03 2.561E+03 2.900E+03 3.050E+03 2.955E+03 2.923E+03 2.732E+03 2.992E+03 2.662E+03 3.092E+03 2.552E+03 

 Std 7.746E+01 2.177E+01 1.084E+02 4.974E+01 1.209E+02 9.201E+01 5.223E+01 1.144E+02 7.248E+01 2.883E+01 5.611E+01 7.529E+01 4.170E+01 

F22 Ave 1.023E+04 1.680E+04 1.535E+04 1.075E+04 1.082E+04 1.489E+04 1.720E+04 1.239E+04 1.456E+04 1.678E+04 1.548E+04 1.779E+04 1.456E+04 

 Std 9.272E+02 5.567E+02 2.886E+03 1.369E+03 7.610E+02 8.877E+02 3.998E+02 8.652E+02 1.647E+03 5.366E+02 2.632E+03 6.842E+02 5.649E+02 

F23 Ave 3.158E+03 3.948E+03 3.437E+03 2.997E+03 3.743E+03 3.785E+03 3.739E+03 4.068E+03 3.310E+03 4.827E+03 3.509E+03 4.168E+03 2.974E+03 

 Std 1.158E+02 5.838E+01 1.190E+02 5.128E+01 1.970E+02 1.656E+02 8.192E+01 2.068E+02 1.211E+02 2.249E+02 2.331E+02 2.077E+02 6.915E+01 

F24 Ave 3.286E+03 4.526E+03 3.606E+03 3.121E+03 3.827E+03 3.890E+03 3.887E+03 4.437E+03 3.405E+03 4.600E+03 3.548E+03 4.466E+03 3.198E+03 

 Std 7.681E+01 9.155E+01 1.655E+02 4.112E+01 1.658E+02 1.415E+02 7.904E+01 2.792E+02 1.257E+02 8.718E+01 9.776E+01 1.816E+02 3.328E+01 

F25 Ave 4.003E+03 8.327E+03 3.282E+03 3.203E+03 7.071E+03 5.207E+03 9.089E+03 3.825E+03 3.905E+03 7.437E+03 5.167E+03 1.456E+04 3.513E+03 

 Std 4.594E+02 1.912E+02 7.689E+01 9.497E+01 2.404E+03 6.007E+02 9.659E+02 1.954E+02 3.565E+02 1.235E+02 8.095E+02 2.050E+03 1.691E+02 

F26 Ave 9.755E+03 1.403E+04 8.438E+03 6.532E+03 1.483E+04 1.448E+04 1.374E+04 1.194E+04 1.179E+04 1.650E+04 1.098E+04 1.693E+04 6.029E+03 

 Std 1.502E+03 2.716E+02 2.596E+03 8.937E+02 1.850E+03 1.551E+03 7.964E+02 1.398E+03 1.547E+03 2.219E+02 8.629E+02 1.142E+03 6.626E+02 

F27 Ave 3.886E+03 6.344E+03 3.984E+03 3.491E+03 4.315E+03 4.962E+03 4.990E+03 5.193E+03 3.858E+03 8.534E+03 3.945E+03 6.394E+03 3.574E+03 

 Std 1.717E+02 1.760E+02 2.086E+02 9.089E+01 3.176E+02 6.770E+02 2.583E+02 6.416E+02 1.480E+02 1.035E+03 1.733E+02 4.828E+02 5.767E+01 

F28 Ave 4.938E+03 8.164E+03 3.875E+03 4.441E+03 7.715E+03 6.118E+03 9.047E+03 4.906E+03 4.419E+03 9.356E+03 5.544E+03 1.152E+04 4.418E+03 

 Std 4.113E+02 2.683E+02 3.062E+02 7.031E+02 1.871E+03 7.124E+02 9.038E+02 3.607E+02 4.735E+02 1.124E+02 5.738E+02 1.213E+03 4.346E+02 

F29 Ave 5.927E+03 1.549E+04 5.661E+03 4.658E+03 7.044E+03 9.887E+03 9.337E+03 7.448E+03 5.700E+03 2.443E+04 5.965E+03 1.572E+04 4.106E+03 

 Std 6.346E+02 2.579E+03 6.688E+02 4.619E+02 8.027E+02 2.151E+03 1.473E+03 1.093E+03 6.552E+02 1.397E+03 4.404E+02 4.990E+03 2.764E+02 

F30 Ave 1.014E+08 2.734E+09 2.788E+07 7.240E+06 1.607E+08 3.350E+08 1.343E+09 1.475E+08 3.409E+07 5.517E+09 4.284E+07 2.996E+09 1.010E+07 

 Std 3.262E+07 4.934E+08 2.619E+07 3.624E+06 1.831E+08 1.301E+08 3.994E+08 7.783E+07 1.375E+07 6.064E+07 1.947E+07 1.782E+09 4.337E+06 

 

 

  



  



Table 8 Experimental results of 13 algorithms on the CEC 2017(Dim=100) 

ID index MELGWO GQPSO IDBO DTSMA CPSOGSA WOA SCA HHO COA CDO OMA SWO ESC 

F1 Ave 7.541E+10 1.903E+11 3.341E+10 2.710E+10 2.062E+11 1.132E+11 2.131E+11 4.987E+10 7.464E+10 1.738E+11 1.144E+11 2.594E+11 5.121E+10 

 Std 1.473E+09 2.649E+10 1.405E+08 1.559E+07 3.142E+09 3.006E+09 1.362E+10 7.889E+08 1.067E+09 3.105E+10 1.521E+09 2.714E+10 7.969E+08 

F2 Ave 

6.179E+144 6.674E+158 5.395E+145 7.821E+138 1.610E+171 1.229E+175 

3.106E+16

3 2.857E+155 2.482E+153 

4.388E+15

7 1.032E+141 2.828E+174 6.678E+136 

 Std 2.138E+145 - 2.953E+146 3.447E+139 - - - - - - 4.346E+141 - 3.657E+137 

F3 Ave 5.857E+05 3.483E+05 3.778E+05 7.678E+05 9.945E+05 9.089E+05 6.132E+05 3.523E+05 7.499E+05 3.488E+05 4.264E+05 9.086E+05 5.974E+05 

 Std 1.731E+05 1.365E+04 2.782E+04 1.275E+05 2.340E+05 1.545E+05 8.742E+04 3.098E+04 1.224E+05 1.072E+04 5.006E+04 7.881E+05 7.007E+04 

F4 Ave 8.921E+03 4.986E+04 4.674E+03 1.891E+03 3.991E+04 2.320E+04 5.178E+04 9.577E+03 9.324E+03 5.028E+04 1.613E+04 8.168E+04 6.265E+03 

 Std 2.308E+03 3.641E+03 1.314E+03 7.271E+02 1.288E+04 4.482E+03 7.434E+03 1.900E+03 2.883E+03 1.164E+03 3.051E+03 1.658E+04 1.553E+03 

F5 Ave 1.481E+03 1.981E+03 1.540E+03 1.313E+03 1.972E+03 1.966E+03 2.071E+03 1.678E+03 1.523E+03 1.976E+03 1.730E+03 2.183E+03 1.242E+03 

 Std 9.002E+01 2.892E+01 1.385E+02 9.752E+01 1.144E+02 1.470E+02 6.550E+01 5.425E+01 3.838E+01 3.030E+01 9.355E+01 9.121E+01 8.882E+01 

F6 Ave 1.481E+03 1.981E+03 1.540E+03 1.313E+03 1.972E+03 1.966E+03 2.071E+03 1.678E+03 1.523E+03 1.976E+03 1.730E+03 2.183E+03 1.242E+03 

 Std 5.107E+00 2.130E+00 1.047E+01 6.462E+00 8.646E+00 9.933E+00 5.493E+00 3.346E+00 2.994E+00 4.221E+00 9.925E+00 5.239E+00 2.609E+00 

F7 Ave 3.047E+03 3.529E+03 2.813E+03 2.410E+03 7.623E+03 3.810E+03 4.082E+03 3.840E+03 3.366E+03 3.452E+03 4.078E+03 4.164E+03 2.043E+03 

 Std 1.768E+02 6.627E+01 2.342E+02 1.592E+02 4.475E+02 1.693E+02 2.035E+02 1.008E+02 1.354E+02 9.419E+01 4.210E+02 1.993E+02 1.793E+02 

F8 Ave 1.831E+03 2.345E+03 1.913E+03 1.643E+03 2.407E+03 2.422E+03 2.409E+03 2.132E+03 2.042E+03 2.432E+03 2.051E+03 2.635E+03 1.535E+03 

 Std 9.939E+01 4.483E+01 1.798E+02 1.183E+02 1.415E+02 1.288E+02 6.521E+01 6.369E+01 5.871E+01 4.583E+01 1.304E+02 9.050E+01 1.079E+02 

F9 Ave 3.670E+04 7.161E+04 7.530E+04 4.351E+04 5.352E+04 7.916E+04 9.195E+04 6.720E+04 4.468E+04 7.426E+04 6.833E+04 1.034E+05 1.785E+04 

 Std 1.009E+04 3.244E+03 6.754E+03 1.247E+04 9.263E+03 1.767E+04 8.715E+03 5.205E+03 1.108E+04 4.704E+03 9.511E+03 6.849E+03 3.304E+03 

F10 Ave 1.937E+04 3.222E+04 3.113E+04 2.292E+04 1.890E+04 2.911E+04 3.305E+04 2.391E+04 2.529E+04 3.253E+04 3.235E+04 3.413E+04 2.936E+04 

 Std 1.184E+03 5.866E+02 2.119E+03 2.315E+03 1.319E+03 1.402E+03 6.402E+02 1.674E+03 3.363E+03 7.422E+02 4.427E+02 7.743E+02 8.710E+02 

F11 Ave 6.716E+04 1.677E+05 2.537E+05 6.150E+04 3.232E+05 3.325E+05 1.841E+05 1.484E+05 3.072E+05 1.960E+05 9.623E+04 2.723E+05 1.037E+05 

 Std 1.178E+04 1.369E+04 6.585E+04 1.836E+04 7.472E+04 1.234E+05 3.296E+04 3.421E+04 8.471E+04 2.496E+04 1.783E+04 7.326E+04 2.238E+04 

F12 Ave 2.291E+10 1.248E+11 5.020E+09 1.236E+09 4.124E+10 2.923E+10 9.895E+10 1.215E+10 1.233E+10 1.086E+11 2.496E+10 1.481E+11 9.023E+09 

 Std 1.212E+10 4.478E+09 3.215E+09 5.746E+08 1.539E+10 5.460E+09 9.817E+09 4.486E+09 7.118E+09 1.989E+09 9.442E+09 2.113E+10 3.659E+09 

F13 Ave 2.923E+09 2.786E+10 1.378E+08 1.327E+07 2.493E+09 3.169E+09 1.773E+10 3.106E+08 8.156E+08 2.814E+10 1.304E+09 3.304E+10 8.836E+08 

 Std 2.454E+09 1.312E+09 1.546E+08 3.521E+07 1.518E+09 1.033E+09 3.309E+09 2.070E+08 1.261E+09 3.788E+08 1.212E+09 7.663E+09 7.047E+08 

F14 Ave 6.250E+06 3.058E+07 6.239E+06 5.720E+06 2.905E+07 1.996E+07 6.751E+07 1.064E+07 9.929E+06 3.045E+07 5.470E+06 9.315E+07 1.102E+07 

 Std 2.938E+06 4.709E+06 5.852E+06 3.540E+06 2.432E+07 8.330E+06 2.585E+07 3.609E+06 5.028E+06 3.454E+06 2.396E+06 5.308E+07 6.047E+06 

F15 Ave 2.352E+08 1.289E+10 1.924E+07 3.296E+05 3.853E+08 4.563E+08 6.310E+09 2.131E+07 1.384E+07 2.625E+10 3.456E+07 1.335E+10 9.791E+07 

 Std 3.785E+08 1.649E+09 5.117E+07 7.131E+05 7.563E+08 2.689E+08 1.953E+09 3.548E+07 3.964E+07 9.858E+07 4.123E+07 4.404E+09 2.341E+08 

F16 Ave 8.072E+03 1.694E+04 7.571E+03 6.472E+03 9.753E+03 1.661E+04 1.477E+04 9.977E+03 8.681E+03 1.895E+04 9.924E+03 1.887E+04 7.712E+03 



 Std 9.890E+02 5.172E+02 8.664E+02 7.066E+02 1.316E+03 2.724E+03 9.014E+02 1.382E+03 1.012E+03 8.069E+02 1.181E+03 1.964E+03 9.236E+02 

F17 Ave 9.540E+03 2.520E+05 8.029E+03 5.740E+03 6.332E+04 2.772E+04 7.317E+04 8.742E+03 6.959E+03 1.123E+07 6.810E+03 1.097E+06 5.442E+03 

 Std 6.836E+03 1.011E+05 1.545E+03 5.345E+02 1.815E+05 2.925E+04 5.662E+04 2.043E+03 1.055E+03 2.542E+05 1.405E+03 1.356E+06 5.257E+02 

F18 Ave 5.384E+06 5.048E+07 1.162E+07 8.195E+06 3.311E+07 1.996E+07 1.311E+08 9.490E+06 8.287E+06 4.096E+07 5.616E+06 1.669E+08 1.061E+07 

 Std 3.098E+06 1.202E+07 6.461E+06 3.603E+06 2.005E+07 1.012E+07 6.334E+07 5.197E+06 5.521E+06 6.112E+06 2.445E+06 1.072E+08 6.984E+06 

F19 Ave 3.792E+08 1.125E+10 4.365E+07 1.562E+06 8.526E+08 4.835E+08 5.579E+09 3.831E+07 2.045E+07 2.281E+10 8.414E+07 1.389E+10 1.841E+08 

 Std 9.387E+08 1.421E+09 6.159E+07 6.783E+06 1.796E+09 2.282E+08 1.373E+09 1.792E+07 2.962E+07 7.503E+07 7.477E+07 3.587E+09 2.738E+08 

F20 Ave 5.430E+03 7.620E+03 7.449E+03 5.743E+03 6.368E+03 7.077E+03 8.075E+03 6.247E+03 6.925E+03 7.886E+03 7.478E+03 8.656E+03 6.307E+03 

 Std 4.846E+02 3.001E+02 4.677E+02 6.441E+02 5.468E+02 6.748E+02 3.324E+02 4.756E+02 5.181E+02 3.066E+02 2.514E+02 2.816E+02 3.722E+02 

F21 Ave 3.393E+03 4.155E+03 3.829E+03 3.113E+03 4.189E+03 4.455E+03 4.202E+03 4.419E+03 3.805E+03 4.034E+03 3.411E+03 4.540E+03 3.062E+03 

 Std 1.034E+02 4.643E+01 2.415E+02 1.088E+02 2.199E+02 2.346E+02 9.074E+01 2.050E+02 2.310E+02 5.805E+01 1.276E+02 1.720E+02 1.179E+02 

F22 Ave 2.340E+04 3.450E+04 3.318E+04 2.399E+04 2.187E+04 3.192E+04 3.557E+04 2.781E+04 3.007E+04 3.538E+04 3.467E+04 3.629E+04 3.123E+04 

 Std 1.785E+03 6.179E+02 1.731E+03 1.946E+03 1.662E+03 1.084E+03 4.741E+02 1.401E+03 2.738E+03 5.731E+02 6.926E+02 1.063E+03 1.116E+03 

F23 Ave 3.996E+03 6.775E+03 4.690E+03 3.472E+03 5.028E+03 5.321E+03 5.177E+03 5.771E+03 4.349E+03 6.413E+03 4.171E+03 6.273E+03 3.424E+03 

 Std 1.184E+02 2.318E+02 2.429E+02 8.188E+01 2.186E+02 2.729E+02 1.231E+02 5.177E+02 1.921E+02 2.113E+02 1.018E+02 4.145E+02 9.954E+01 

F24 Ave 4.720E+03 9.658E+03 5.794E+03 4.026E+03 6.772E+03 6.658E+03 7.412E+03 8.425E+03 5.296E+03 9.774E+03 5.836E+03 9.871E+03 4.207E+03 

 Std 2.443E+02 1.845E+02 4.067E+02 1.082E+02 4.340E+02 3.642E+02 2.793E+02 5.943E+02 3.389E+02 5.130E+02 2.945E+02 8.896E+02 1.413E+02 

F25 Ave 7.826E+03 1.743E+04 6.056E+03 5.174E+03 2.356E+04 1.091E+04 2.344E+04 6.724E+03 8.384E+03 1.785E+04 1.196E+04 2.813E+04 7.534E+03 

 Std 1.235E+03 4.076E+02 1.054E+03 5.314E+02 5.272E+03 1.108E+03 2.140E+03 7.408E+02 1.186E+03 4.317E+02 1.645E+03 3.126E+03 1.026E+03 

F26 Ave 2.518E+04 3.733E+04 2.338E+04 1.396E+04 3.791E+04 3.966E+04 4.141E+04 3.185E+04 3.284E+04 4.511E+04 3.451E+04 5.005E+04 1.569E+04 

 Std 3.783E+03 6.960E+02 3.101E+03 1.207E+03 3.528E+03 3.258E+03 2.309E+03 1.449E+03 2.403E+03 8.656E+02 4.061E+03 4.492E+03 1.588E+03 

F27 Ave 4.687E+03 1.082E+04 4.328E+03 3.724E+03 5.739E+03 6.020E+03 8.787E+03 7.087E+03 4.518E+03 1.028E+04 5.434E+03 1.134E+04 4.133E+03 

 Std 3.460E+02 6.721E+02 2.923E+02 7.362E+01 7.123E+02 8.980E+02 7.392E+02 1.076E+03 4.345E+02 4.441E+02 3.180E+02 1.130E+03 1.350E+02 

F28 Ave 9.904E+03 1.924E+04 7.347E+03 1.012E+04 2.765E+04 1.491E+04 2.835E+04 9.341E+03 1.096E+04 3.346E+04 1.535E+04 3.299E+04 1.129E+04 

 Std 1.190E+03 5.557E+02 1.048E+03 3.997E+03 4.862E+03 1.463E+03 3.429E+03 8.426E+02 1.547E+03 4.749E+02 2.053E+03 3.798E+03 1.429E+03 

F29 Ave 1.265E+04 7.954E+04 9.222E+03 8.596E+03 2.405E+04 2.240E+04 3.858E+04 1.343E+04 1.105E+04 1.869E+05 1.281E+04 1.529E+05 7.782E+03 

 Std 1.687E+03 1.863E+04 9.850E+02 9.128E+02 1.231E+04 4.485E+03 1.709E+04 1.255E+03 1.030E+03 1.483E+04 1.126E+03 1.035E+05 7.371E+02 

F30 Ave 1.473E+09 2.649E+10 1.405E+08 1.559E+07 3.142E+09 3.006E+09 1.362E+10 7.889E+08 1.067E+09 3.105E+10 1.521E+09 2.714E+10 7.969E+08 

 Std 1.636E+09 1.720E+09 1.093E+08 1.182E+07 4.175E+09 1.294E+09 2.689E+09 4.201E+08 1.273E+09 5.485E+08 1.238E+09 4.645E+09 6.534E+08 

 

  



4.4.2 Comparison with Other Competitive Algorithms on CEC 2022 

In this section, we present a comprehensive evaluation of the ESC algorithm's performance in 

comparison with 12 other methodologies, specifically focusing on dimensions of 10 and 20 within the 

framework of the CEC 2022 benchmark suite. This analysis meticulously documents the mean value 

(Ave) and standard deviation (Std) derived from thirty independent trials for each algorithm, as depicted 

in Table 9 and 10. A pivotal element of our study centers on the convergence velocity of the algorithm 

through a comparative assessment of the iteration advancements among different algorithms. As shown 

in Fig.11, the ESC algorithm exhibits a markedly more rapid convergence rate than its counterparts. 

In addition, to evaluate the stability of the algorithm, Fig.12 provides a boxplot analysis of the ESC 

algorithm compared with similar algorithms. The ESC algorithm is characterized by small variance, 

which emphasizes its consistency and reliability across operations. In addition, Fig.13 aims to visually 

convey the effectiveness of various algorithms in solving optimization challenges across different 

functions, using the Friedman average ranking as a benchmark for comparison.  

In the CEC 2022 benchmark tests, the ESC algorithm exhibited impressive performance across the 

10 and 20-dimensional tests, ranking first in the Friedman mean ranking for both dimensions. Overall, 

the ESC algorithm outperformed all other competing algorithms, particularly displaying stable 

performance across most functions. A detailed comparison between ESC and other algorithms reveals 

that, in the 10 and 20-dimensional tests, ESC outperformed MELGWO and IDBO on most functions. In 

the 10-dimensional scenario, ESC performed superior on 7 functions, with only slight inferiority on one 

function. In the 20-dimensional scenario, ESC outperformed MELGWO on 9 functions, demonstrating 

greater adaptability and superiority. IDBO's performance on some specific functions was close to ESC's, 

but overall, it could not surpass ESC's stability and convergence speed. The DTSMA algorithm exhibited 

very close competition with ESC in the CEC 2022 benchmark tests, particularly in the 10 and 20-

dimensional Friedman mean rankings, where DTSMA closely followed ESC. While DTSMA 

outperformed ESC on certain functions, ESC maintained an overall performance and convergence speed 

advantage. GQPSO and SCA continued to perform poorly in the CEC 2022 benchmark tests, with these 

algorithms lagging behind ESC on most functions, particularly in terms of convergence speed and 

stability. HHO and WOA performed moderately in the 10 and 20-dimensional tests but fell short of ESC 

on most functions. CPSOGSA's performance in the 20-dimensional test was relatively average, with 

some success on specific functions, but overall, it did not surpass ESC. COA performed slightly better 

than WOA and HHO in the 10 and 20-dimensional tests, but still failed to overtake ESC in overall ranking. 

CDO and SWO continued to perform poorly across all dimensions, ranking low in the Friedman mean 

rankings, indicating their inadequacies in handling complex multi-dimensional optimization problems. 

OMA's performance in the 10 and 20-dimensional tests was also unable to surpass ESC, although it 

performed well on a few specific functions. However, in the overall ranking, it still fell behind. The 

analysis of the iteration curves in Fig.11 shows that the ESC algorithm's convergence speed in the 10 and 

20 dimensions was significantly superior to other algorithms. The boxplot in Fig.12 further confirmed 

the stability of the ESC algorithm, with low variance indicating high consistency across different 



experiments. 

While the ESC algorithm performed excellently on most test functions, its advantage was less 

pronounced on some specific complex functions, and in a few cases, it even showed performance close 

to or slightly inferior to DTSMA. This suggests that, although the ESC algorithm excels in handling a 

wide range of optimization problems, there is room for improvement in dealing with certain extreme or 

specialized optimization problems. 

 

  

  

  

Fig.11 Comparison of iteration curves of different algorithms on CEC 2022 test suite 

 



  

  

  

Fig. 12 Comparison of boxplot of different algorithms on CEC 2022 test suite 

 

 



 

Fig.13 Friedman average ranking of different algorithms on the CEC 2022 test suite 



Table 9 Experimental results of 13 algorithms on the CEC 2022(Dim=10) 

ID index MELGWO GQPSO IDBO DTSMA CPSOGSA WOA SCA HHO COA CDO OMA SWO ESC 

F1 Ave 3.029E+02 4.264E+03 5.706E+02 3.005E+02 1.377E+04 2.383E+04 2.433E+03 9.441E+02 2.998E+03 1.410E+06 3.623E+02 1.283E+04 4.193E+02 

 Std 6.285E+00 8.248E+02 4.003E+02 1.431E+00 1.059E+04 1.168E+04 1.251E+03 3.729E+02 1.870E+03 7.568E+06 6.570E+01 6.379E+03 1.172E+02 

F2 Ave 4.166E+02 5.995E+02 4.229E+02 4.114E+02 4.451E+02 4.618E+02 4.771E+02 4.526E+02 4.166E+02 8.711E+02 4.125E+02 6.841E+02 4.059E+02 

 Std 2.620E+01 3.893E+01 2.683E+01 1.654E+01 4.993E+01 6.728E+01 2.250E+01 6.186E+01 2.543E+01 1.895E+01 2.413E+01 1.343E+02 3.379E+00 

F3 Ave 6.099E+02 6.389E+02 6.083E+02 6.002E+02 6.375E+02 6.418E+02 6.233E+02 6.375E+02 6.089E+02 6.391E+02 6.007E+02 6.383E+02 6.000E+02 

 Std 7.622E+00 4.206E+00 8.031E+00 1.148E-01 1.851E+01 1.882E+01 4.772E+00 1.173E+01 1.196E+01 3.151E+00 9.863E-01 1.214E+01 1.511E-04 

F4 Ave 8.172E+02 8.418E+02 8.261E+02 8.199E+02 8.335E+02 8.429E+02 8.468E+02 8.293E+02 8.305E+02 8.505E+02 8.237E+02 8.654E+02 8.131E+02 

 Std 7.213E+00 3.845E+00 9.933E+00 5.826E+00 1.317E+01 1.772E+01 7.245E+00 9.281E+00 4.239E+00 7.818E+00 5.864E+00 1.434E+01 4.894E+00 

F5 Ave 9.305E+02 1.142E+03 1.007E+03 9.060E+02 1.653E+03 1.467E+03 1.032E+03 1.456E+03 1.095E+03 1.442E+03 9.041E+02 1.647E+03 9.000E+02 

 Std 2.933E+01 5.025E+01 8.636E+01 1.377E+01 4.694E+02 3.263E+02 3.320E+01 1.670E+02 2.276E+02 8.546E+01 1.034E+01 2.540E+02 3.887E-02 

F6 Ave 3.671E+03 5.792E+06 4.635E+03 5.582E+03 4.607E+03 5.375E+03 3.740E+06 6.830E+03 4.666E+03 8.184E+08 2.189E+03 2.160E+07 3.836E+03 

 Std 1.884E+03 4.310E+06 2.175E+03 2.060E+03 2.257E+03 4.523E+03 2.977E+06 4.486E+03 2.050E+03 6.755E+08 4.118E+02 2.401E+07 1.655E+03 

F7 Ave 2.041E+03 2.093E+03 2.034E+03 2.020E+03 2.091E+03 2.078E+03 2.065E+03 2.095E+03 2.031E+03 2.153E+03 2.030E+03 2.101E+03 2.012E+03 

 Std 1.779E+01 1.170E+01 1.408E+01 5.449E+00 4.613E+01 2.889E+01 9.133E+00 3.679E+01 3.131E+01 8.288E+00 7.852E+00 2.409E+01 9.830E+00 

F8 Ave 2.222E+03 2.237E+03 2.226E+03 2.221E+03 2.287E+03 2.235E+03 2.236E+03 2.232E+03 2.238E+03 2.239E+03 2.228E+03 2.248E+03 2.217E+03 

 Std 5.337E+00 4.110E+00 5.380E+00 4.997E+00 5.595E+01 5.743E+00 3.147E+00 7.686E+00 3.755E+01 8.605E+00 2.343E+00 1.534E+01 8.314E+00 

F9 Ave 2.536E+03 2.673E+03 2.537E+03 2.529E+03 2.585E+03 2.603E+03 2.581E+03 2.619E+03 2.534E+03 2.664E+03 2.529E+03 2.680E+03 2.529E+03 

 Std 2.693E+01 1.249E+01 2.568E+01 4.425E-05 4.358E+01 4.885E+01 1.904E+01 5.048E+01 2.683E+01 3.215E+00 7.403E-01 4.286E+01 1.112E-07 

F10 Ave 2.569E+03 2.553E+03 2.566E+03 2.504E+03 2.614E+03 2.688E+03 2.523E+03 2.613E+03 2.577E+03 2.825E+03 2.504E+03 2.561E+03 2.526E+03 

 Std 1.046E+02 6.173E+01 6.648E+01 2.075E+01 1.252E+02 2.883E+02 5.105E+01 1.559E+02 9.949E+01 2.509E+02 2.058E+01 7.827E+01 4.775E+01 

F11 Ave 2.698E+03 2.877E+03 2.745E+03 2.633E+03 2.911E+03 2.908E+03 2.795E+03 2.833E+03 2.787E+03 3.339E+03 2.741E+03 3.012E+03 2.717E+03 

 Std 1.380E+02 3.958E+01 1.523E+02 8.649E+01 1.904E+02 3.100E+02 7.785E+01 1.771E+02 1.659E+02 5.670E+01 1.227E+02 2.504E+02 1.249E+02 

F12 Ave 2.865E+03 2.955E+03 2.874E+03 2.863E+03 2.889E+03 2.907E+03 2.872E+03 2.917E+03 2.868E+03 3.071E+03 2.869E+03 2.937E+03 2.864E+03 

 Std 4.235E+00 1.152E+01 9.101E+00 1.666E+00 2.974E+01 4.392E+01 3.259E+00 3.616E+01 7.611E+00 2.982E+01 3.997E+00 3.253E+01 1.145E+00 

 

Table 10 Experimental results of 13 algorithms on the CEC 2022(Dim=20) 

ID index MELGWO GQPSO IDBO DTSMA CPSOGSA WOA SCA HHO COA CDO OMA SWO ESC 

F1 Ave 7.212E+03 2.373E+04 3.382E+04 2.386E+03 5.313E+04 3.265E+04 2.030E+04 2.331E+04 4.534E+04 3.050E+04 2.103E+04 4.680E+04 1.285E+04 

 Std 2.810E+03 4.429E+03 1.011E+04 1.648E+03 1.812E+04 1.107E+04 5.839E+03 1.056E+04 1.458E+04 3.987E+03 6.668E+03 1.566E+04 5.189E+03 

F2 Ave 4.985E+02 1.090E+03 4.719E+02 4.500E+02 5.552E+02 6.379E+02 8.610E+02 5.355E+02 5.092E+02 2.106E+03 5.231E+02 1.408E+03 4.543E+02 



 Std 4.611E+01 7.134E+01 2.747E+01 1.320E+01 1.295E+02 8.911E+01 1.526E+02 4.210E+01 7.223E+01 4.719E+01 5.402E+01 3.839E+02 9.147E+00 

F3 Ave 6.323E+02 6.660E+02 6.257E+02 6.039E+02 6.570E+02 6.730E+02 6.489E+02 6.635E+02 6.346E+02 6.676E+02 6.147E+02 6.742E+02 6.000E+02 

 Std 1.225E+01 3.818E+00 1.044E+01 5.522E+00 9.728E+00 1.439E+01 6.890E+00 7.679E+00 1.933E+01 7.847E+00 8.259E+00 9.730E+00 8.590E-03 

F4 Ave 8.645E+02 9.531E+02 8.887E+02 8.548E+02 9.283E+02 9.373E+02 9.610E+02 8.876E+02 8.890E+02 9.520E+02 8.965E+02 9.965E+02 8.573E+02 

 Std 1.737E+01 8.453E+00 3.575E+01 1.577E+01 3.283E+01 2.951E+01 1.899E+01 1.592E+01 1.123E+01 1.060E+01 1.531E+01 1.810E+01 1.723E+01 

F5 Ave 1.672E+03 2.819E+03 2.046E+03 1.523E+03 4.419E+03 4.055E+03 2.761E+03 2.970E+03 2.645E+03 3.633E+03 1.469E+03 4.666E+03 9.029E+02 

 Std 3.617E+02 1.954E+02 5.914E+02 5.407E+02 1.125E+03 1.674E+03 5.488E+02 3.102E+02 5.191E+02 2.375E+02 3.919E+02 1.103E+03 3.593E+00 

F6 Ave 6.859E+03 2.143E+08 2.711E+05 1.493E+04 9.291E+05 6.981E+06 1.295E+08 2.120E+05 5.772E+03 5.286E+09 4.325E+03 6.063E+08 5.934E+03 

 Std 5.786E+03 9.305E+07 1.194E+06 8.462E+03 5.024E+06 1.024E+07 9.712E+07 1.001E+05 5.551E+03 1.249E+09 2.730E+03 3.640E+08 5.064E+03 

F7 Ave 2.131E+03 2.202E+03 2.105E+03 2.088E+03 2.217E+03 2.223E+03 2.160E+03 2.190E+03 2.176E+03 2.348E+03 2.093E+03 2.232E+03 2.042E+03 

 Std 5.422E+01 1.766E+01 3.453E+01 4.558E+01 8.677E+01 6.436E+01 2.534E+01 5.948E+01 1.239E+02 3.449E+01 1.911E+01 6.016E+01 1.992E+01 

F8 Ave 2.270E+03 2.281E+03 2.291E+03 2.230E+03 2.369E+03 2.317E+03 2.286E+03 2.277E+03 2.275E+03 2.257E+03 2.238E+03 2.485E+03 2.235E+03 

 Std 6.282E+01 1.964E+01 6.574E+01 5.978E+00 1.137E+02 9.190E+01 2.699E+01 5.903E+01 6.548E+01 9.290E+00 7.312E+00 1.866E+02 2.442E+01 

F9 Ave 2.500E+03 2.810E+03 2.506E+03 2.481E+03 2.540E+03 2.591E+03 2.633E+03 2.554E+03 2.482E+03 3.477E+03 2.492E+03 2.814E+03 2.483E+03 

 Std 1.838E+01 5.053E+01 2.779E+01 2.448E-01 5.314E+01 5.446E+01 4.415E+01 4.137E+01 3.081E+00 1.084E+02 5.505E+00 1.429E+02 2.083E+00 

F10 Ave 3.793E+03 2.706E+03 3.055E+03 2.963E+03 4.605E+03 5.074E+03 2.970E+03 4.495E+03 4.485E+03 6.474E+03 2.536E+03 4.909E+03 2.671E+03 

 Std 7.000E+02 1.447E+02 9.777E+02 6.115E+02 1.086E+03 1.161E+03 1.238E+03 8.179E+02 1.303E+03 3.167E+02 7.741E+01 1.899E+03 2.005E+02 

F11 Ave 3.065E+03 6.727E+03 3.036E+03 2.928E+03 3.997E+03 3.809E+03 5.006E+03 3.491E+03 3.193E+03 8.519E+03 3.392E+03 6.818E+03 2.897E+03 

 Std 2.017E+02 2.015E+02 1.761E+02 9.422E+01 1.109E+03 4.444E+02 5.103E+02 7.064E+02 4.892E+02 9.093E+01 4.407E+02 9.215E+02 6.146E+01 

F12 Ave 2.987E+03 3.548E+03 3.019E+03 2.948E+03 3.091E+03 3.121E+03 3.087E+03 3.276E+03 2.996E+03 3.579E+03 3.015E+03 3.496E+03 2.956E+03 

 Std 4.415E+01 5.860E+01 5.989E+01 1.231E+01 9.676E+01 1.454E+02 3.124E+01 1.748E+02 5.466E+01 5.460E+01 3.029E+01 1.584E+02 1.376E+01 

 

 

 



4.5 Statistical Analysis 

4.5.1 Wilcoxon rank sum test 

      The Wilcoxon rank sum test [75], a nonparametric method, is utilized to assess the disparities 

between ESC and its rival algorithms, with findings depicted in Table 11. A p-value below 0.05 signifies 

a significant variance between ESC and the competing algorithm, while a lack of significant difference 

is accordingly noted. The symbols '+/=/−' denote whether ESC outperforms, matches, or underperforms 

compared to its competitors.  

 The Wilcoxon rank sum test results from Table 11 robustly demonstrate the ESC algorithm's 

exceptional performance across various dimensions of the CEC 2017 and CEC 2022 benchmarks. ESC 

shows consistent strength, starting from the 10-dimension tests in CEC 2017, where it outperforms or 

closely matches its counterparts all the way up to the 100 dimensions. In the 30-dimensional tests, ESC 

excels with a dominant performance against algorithms such as GQPSO, SCA, and WOA, achieving 

impressive results like a 29/0/1 score against GQPSO. Despite not always being the top performer in the 

50 and 100 dimensions of CEC 2017, ESC's results remain competitive. For instance, it closely 

challenges DTSMA, which exhibits a marginal lead in these dimensions. In the CEC 2022 benchmarks, 

ESC extends its exemplary performance, particularly in the 10 and 20 dimensions, by securing perfect 

or near-perfect scores against most competitors, as seen with algorithms like WOA and CPSOGSA. 

These results underscore its capability to rapidly converge to optimal solutions, even in scenarios that 

are considered less complex. Across all tested dimensions, the comprehensive results affirm ESC's 

versatility and robust design, establishing it as an effective tool for managing and excelling in complex 

optimization environments.  

 

Table 11 Wilcoxon rank sum test statistical results 

ESC VS. CEC 2017 

(Dim=10) 

CEC 2017 

(Dim=30) 

CEC 2017 

(Dim=50) 

CEC 2017 

(Dim=100) 

CEC 2022 

(Dim=10) 

CEC 2022 

(Dim=20) 

MELGWO 26/2/2 26/2/2 25/2/3 18/5/7 7/4/1 9/3/0 

GQPSO 29/0/1 29/0/1 29/0/1 29/0/1 12/0/0 11/1/0 

IDBO 24/3/3 24/3/3 23/4/3 17/4/9 9/3/0 10/2/0 

DTSMA 15/7/8 15/7/8 8/10/12 7/5/18 6/4/2 5/3/4 

CPSOGSA 29/0/1 29/0/1 27/1/2 27/1/2 11/1/0 12/0/0 

WOA 30/0/0 30/0/0 28/2/0 29/1/0 11/1/0 12/0/0 

SCA 29/1/0 29/1/0 29/1/0 29/1/0 12/0/0 11/1/0 

HHO 28/0/2 28/0/2 27/0/3 17/7/6 12/0/0 12/0/0 

COA 28/1/1 28/1/1 27/3/0 20/8/2 10/2/0 10/1/1 

CDO 29/1/0 29/1/0 29/0/1 29/0/1 12/0/0 12/0/0 

OMA 24/2/4 24/2/4 27/0/3 23/4/3 9/1/2 10/2/0 

SWO 30/0/0 30/0/0 30/0/0 29/1/0 12/0/0 12/0/0 

Overall (+/=/-) 301/17/22 321/17/22 309/23/28 273/37/49 123/16/5 126/13/5 

4.5.2 Friedman mean rank test 

        In this part, we utilize the nonparametric Friedman mean rank test[76] to evaluate and position the 

performance of ESC relative to competing algorithms on the CEC 2017 and CEC 2022 global 

optimization suites. The findings from this evaluation are detailed in Table 12. The experimental data 

clearly shows that ESC maintains a high rank throughout. This result underscores the exceptional efficacy 

of the ESC algorithm we proposed, as demonstrated in the test suites, against the performance of other 

competing algorithms. 

 The Friedman mean rank test results from Table 12 clearly illustrate the impressive performance of 

the ESC across various dimensions of the CEC 2017 and CEC 2022 benchmarks. ESC ranks first in both 

the 10 and 30 dimensions of CEC 2017, showcasing its efficacy in lower and mid-range dimensional 

challenges. In the 50 dimensions of CEC 2017, ESC is highly competitive, securing the second rank, just 

behind DTSMA, which takes the first place. This slight drop highlights DTSMA’s specific strength in 

this dimensional setting but still underscores ESC's robust performance across a spectrum of complexities. 

In the 100 dimensions of CEC 2017, ESC continues to demonstrate strong adaptability and robustness 



by ranking second, indicating its capability to maintain high performance even as the complexity of the 

dimensionality increases. In the CEC 2022 benchmarks, ESC resumes its top position, ranking first in 

both the 10 and 20 dimensions, further validating its effectiveness and strategic advantages in navigating 

through dynamic and complex optimization scenarios. Comparatively, while ESC consistently 

outperforms or ranks near the top, other algorithms such as MELGWO, GQPSO, and IDBO show 

variable performance across the different dimensions. DTSMA emerges as a strong competitor, 

particularly excelling in the 50 and 100 dimensions of CEC 2017. Algorithms like CPSOGSA, WOA, 

and SCA tend to rank in the middle, reflecting their moderate adaptability across the tested dimensions. 

Overall, the rankings from the Friedman mean rank test underscores the consistent effectiveness of the 

ESC across multiple dimensions of the CEC 2017 and CEC 2022 benchmarks. ESC's strong performance 

across different test scenarios illustrates its efficient design and capability to manage complex 

optimization problems. This performance highlights ESC as a reliable and competent algorithm suitable 

for a variety of optimization tasks in evolutionary computing. 

 

Table 12 Friedman mean rank test for all test suites. 

Suites CEC 2017                 CEC 2022 

Dimensions 10 30 50 100 10 20 

Algorithms Ave. 

Rank 

Overall 

  Rank 

Ave. 

Rank 

Overall 

  Rank 

Ave. 

Rank 

Overall 

  Rank 

Ave. 

Rank 

Overall 

  Rank 

Ave. 

Rank 

Overall 

  Rank 

Ave. 

Rank 

Overall 

  Rank 

MELGWO 4.684  4 4.353  3 4.154  3 4.179  3 4.147  4 4.745  4 

GQPSO 9.982  11 10.327  11 10.084  11 9.872  10 9.919  13 9.625  11 

IDBO 5.402  6 4.699  5 4.807  4 4.469  4 5.353  5 5.156  5 

DTSMA 3.571  2 2.613  2 2.239  1 2.237  1 2.844  2 2.564  2 

CPSOGSA 7.924  7 7.711  8 7.622  8 8.194  8 8.564  9 8.392  9 

WOA 8.647  10 9.297  9 8.886  9 8.701  9 8.839  10 9.122  10 

SCA 8.306  9 9.328  10 9.727  10 10.300  11 8.233  8 8.325  8 

HHO 8.044  8 7.254  7 6.627  7 5.860  6 8.203  7 7.761  7 

COA 5.097  5 5.016  6 5.387  5 5.116  5 5.497  6 5.875  6 

CDO 11.311  13 11.610  12 11.584  12 10.444  12 11.869  12 11.378  12 

OMA 4.058  3 4.692  4 5.419  6 6.196  7 4.089  3 4.575  3 

SWO 11.154  12 11.753  13 11.921  13 12.117  13 10.931  11 11.406  13 

ESC 2.818  1 2.347  1 2.543  2 3.316  2 2.511  1 2.292  1 

5. Real World Problems 

5.1 Engineering Problems 

      In this section, we use ESC to solve four engineering problems, namely the speed reducer design 

[77], pressure vessel design [78], tension/compression spring design[79], rolling element bearing design 

[80]. In this section, the maximum number of iterations 𝑇 of each algorithm is set to 500. The population 

𝑁 was 30 and ran independently 30 times for comparison. Figs. 14-17 show the schematics of these four 

engineering problems respectively. 

5.1.1 Speed Reducer Design  

The task entails creating a speed reducer for a small aircraft engine. This leads to an optimization 

problem that is characterized as follows: 

Minimize: 
𝑓(�⃗�) = 0.7854𝑥2

2𝑥1(14.9334𝑥3 − 43.0934+ 3.3333𝑥3
2) + 0.7854(𝑥5𝑥7

2 + 𝑥4𝑥6
2) − 1.508𝑥1(𝑥7

2 + 𝑥6
2) + 7.477(𝑥7

3 + 𝑥6
3) 

subject to: 

𝑔1(�⃗�) = −𝑥1𝑥2
2𝑥3 + 27 ≤ 0 

𝑔2(�⃗�) = −𝑥1𝑥2
2𝑥3

2 + 397.5 ≤ 0 

𝑔3(�⃗�) = −𝑥2𝑥6
4𝑥3𝑥4

−3 + 1.93 ≤ 0 

𝑔4(�⃗�) = −𝑥2𝑥7
4𝑥3𝑥5

−3 + 1.93 ≤ 0 



𝑔5(�⃗�) = 10𝑥6
−3√16.91 × 106 + (745𝑥4𝑥2

−1𝑥3
−1)2 − 1100 ≤ 0                               

                    (15) 

𝑔6(�⃗�) = 10𝑥7
−3√157.5 × 106 + (745𝑥5𝑥2

−1𝑥3
−1)2 − 850 ≤ 0 

𝑔7(�⃗�) = 𝑥2𝑥3 − 40 ≤ 0 

𝑔8(�⃗�) = −𝑥1𝑥2
−1 + 5 ≤ 0 

𝑔9(�⃗�) = 𝑥1𝑥2
−1 − 12 ≤ 0 

𝑔10(�⃗�) = 1.5𝑥6 − 𝑥4 + 1.9 ≤ 0 

𝑔11(�⃗�) = 1.1𝑥7 − 𝑥5 + 1.9 ≤ 0 

with bounds: 

0.7 ≤ 𝑥2 ≤ 0.8,17 ≤ 𝑥3 ≤ 28,2.6 ≤ 𝑥1 ≤ 3.6, 

5 ≤ 𝑥7 ≤ 5.5,7.3 ≤ 𝑥5, 𝑥4 ≤ 8.3,2.9 ≤ 𝑥6 ≤ 3.9 

 
                                                        Fig.14 Speed reducer design 

Table 13 Comparative results for speed reducer design 

Algorithms   Worst Best Mean Median Std Friedman 

Ranking 

Wilcoxon 

MELGWO 3.004E+03 2.995E+03 2.997E+03 2.996E+03 2.500E+00 3 (＋) 

GQPSO 6.487E+14 4.184E+03 2.007E+14 1.355E+14 1.861E+14 13 (＋) 

IDBO 3.311E+03 2.994E+03 3.073E+03 3.047E+03 8.046E+01 6 (＋) 

DTSMA 2.995E+03 2.994E+03 2.994E+03 2.994E+03 9.728E-02 1 (＋) 

CPSOGSA 3.016E+03 2.996E+03 3.007E+03 3.007E+03 5.223E+00 5 (＋) 

WOA 5.673E+03 3.018E+03 3.496E+03 3.177E+03 7.319E+02 10 (＋) 

SCA 3.221E+03 3.053E+03 3.156E+03 3.171E+03 4.233E+01 9 (＋) 

HHO 5.117E+03 3.018E+03 3.872E+03 3.824E+03 6.773E+02 11 (＋) 

COA 3.005E+03 2.995E+03 2.997E+03 2.996E+03 2.693E+00 4 (＋) 

CDO 3.200E+03 3.065E+03 3.145E+03 3.145E+03 4.234E+01 8 (＋) 

OMA 4.752E+03 3.013E+03 3.251E+03 3.133E+03 4.161E+02 7 (＋) 

SWO 2.361E+12 3.102E+03 8.693E+10 3.396E+03 4.319E+11 12 (＋) 

ESC 2.995E+03 2.994E+03 2.995E+03 2.994E+03 8.428E-02 2 / 

 

        In Table 13, the ESC algorithm demonstrated exceptional performance, consistently ranking 

among the top algorithms across all key metrics. ESC achieved one of the best worst-case 



performances at 2.995E+03 and matched DTSMA with the most optimal best-case result at 

2.994E+03. Its mean value of 2.995E+03 and median of 2.994E+03 were among the lowest, 

indicating high accuracy and reliability. Moreover, ESC's standard deviation was remarkably small 

at 8.428E-02, reflecting minimal variability in its results and underscoring its robustness. While 

DTSMA ranked first in the Friedman test with the lowest standard deviation and nearly identical 

performance metrics, ESC still demonstrated superior consistency overall, securing second place in 

the Friedman ranking. MELGWO, COA, and CPSOGSA also performed well, securing third, fourth, 

and fifth places in the Friedman ranking, respectively, but each showed slightly higher variability 

than ESC. IDBO, although displaying some strength in finding near-optimal solutions, exhibited 

greater variability and lower overall consistency. The remaining algorithms, including GQPSO, 

WOA, SCA, HHO, CDO, OMA, and SWO, all lagged behind ESC, with significantly higher 

standard deviations and less stable performances. Overall, ESC's impressive results in both accuracy 

and stability, combined with its high ranking, highlight its effectiveness and reliability in complex 

optimization landscapes, despite its second-place finish in the Friedman test. 

5.1.2 Pressure Vessel Design 

The problem of Pressure vessel design aims at minimizing the welding cost, material, and form by 

optimizing the dimensions such as head thickness (Th), the length of the container excluding the head 

(L), the thickness of the container (TS), and the inner radius (R). The structural representation is depicted 

in Fig. 15, while the mathematical formulation is provided in Eq. (15). 

Minimize： 

𝑓(�⃗�) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3
2 + 3.1661𝑥1

2𝑥4 + 19.84𝑥1
2𝑥3 

subject to: 

𝑔1(�⃗�) = −𝑥1 + 0.0193𝑥3 ≤ 0 

𝑔2(�⃗�) = −𝑥2 + 0.00954𝑥3 ≤ 0 

𝑔3(�⃗�) = 𝑥4 − 240 ≤ 0 

                                       𝑔4(�⃗�) = −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3 + 1296000 ≤ 0                                      (16) 

with bounds: 

                     1 ≤ 𝑥1, 𝑥2 ≤ 99(𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) 

10 ≤ 𝑥3, 𝑥4 ≤ 200 

 

 

 

 
Fig.15 Pressure vessel design 

Table 14 Comparative results for pressure vessel design 

Algorithms   Worst Best Mean Median Std Friedman Wilcoxon 



Ranking 

MELGWO 1.431E-02 1.267E-02 1.298E-02 1.279E-02 4.048E-04 3 (＋) 

GQPSO 7.404E+13 1.288E-02 5.085E+12 1.322E-02 1.674E+13 12 (＋) 

IDBO 1.790E-02 1.271E-02 1.399E-02 1.319E-02 1.828E-03 9 (＋) 

DTSMA 1.656E-02 1.269E-02 1.356E-02 1.285E-02 1.052E-03 6 (＋) 

CPSOGSA 1.515E-02 1.267E-02 1.310E-02 1.284E-02 6.403E-04 5 (＋) 

WOA 1.663E-02 1.267E-02 1.370E-02 1.338E-02 9.771E-04 11 (＋) 

SCA 1.328E-02 1.279E-02 1.309E-02 1.315E-02 1.575E-04 8 (＋) 

HHO 1.778E-02 1.267E-02 1.377E-02 1.325E-02 1.276E-03 10 (＋) 

COA 1.508E-02 1.268E-02 1.309E-02 1.281E-02 6.132E-04 4 (＋) 

CDO 1.383E-02 1.276E-02 1.309E-02 1.306E-02 2.402E-04 7 (＋) 

OMA 1.289E-02 1.268E-02 1.276E-02 1.275E-02 5.558E-05 2 (＋) 

SWO 4.440E-02 1.435E-02 2.312E-02 2.093E-02 7.272E-03 13 (＋) 

ESC 1.275E-02 1.268E-02 1.272E-02 1.273E-02 1.982E-05 1 / 

 

     In Table 14, the ESC algorithm exhibited outstanding performance, securing the top position 

across all key metrics. ESC achieved the best worst-case result of 1.275E-02 and the most optimal 

best-case value of 1.268E-02. It also maintained the lowest mean and median values of 1.272E-02 

and 1.273E-02, respectively. Furthermore, ESC demonstrated remarkable stability with the smallest 

standard deviation of 1.982E-05, indicating high consistency and reliability in its results. These 

factors contributed to ESC's first-place ranking in the Friedman test, outperforming all other 

algorithms. MELGWO followed closely, ranking third in the Friedman test. While MELGWO 

showed a solid performance with a mean of 1.298E-02 and a median of 1.279E-02, its higher 

standard deviation of 4.048E-04 suggested more variability compared to ESC. DTSMA, although 

ranking higher in the Wilcoxon test, only managed sixth place in the Friedman ranking due to its 

higher standard deviation of 1.052E-03, reflecting less consistency. Other algorithms like COA and 

CPSOGSA showed competitive results but could not match the stability and overall performance of 

ESC. 

 

5.1.3 Tension/compression Spring Design 

 The primary aim of this problem is to enhance the optimization of tension or compression 

spring weight. This issue involves four constraints, and the weight calculation relies on three 

variables: wire diameter (𝑥1), the mean of coil diameter (𝑥2), and the count of active coils (𝑥3). The 

problem is articulated in the following manner: 

Minimize： 

        𝑓(�⃗�) = 𝑥1
2𝑥2(𝑥3 + 2) 

subject to: 

       𝑔1(�⃗�) = 1 −
𝑥2
3𝑥3

71785𝑥1
4 ≤ 0 

       𝑔2(�⃗�) =
1

5108𝑥1
2 +

4𝑥2
2−𝑥1𝑥2

12566(𝑥2𝑥1
3−𝑥1

4)
− 1 ≤ 0                (17) 

       𝑔3(�⃗�) = 1 −
140.45𝑥1

𝑥2
2𝑥3

≤ 0 

       𝑔4(�⃗�) =
𝑥1+𝑥2

1.5
− 1 ≤ 0 

with bounds: 

                  0.05 ≤ 𝑥1 ≤ 2.00 

           0.25 ≤ 𝑥2 ≤ 1.30 

           2.00 ≤ 𝑥3 ≤ 15.0 

consider: 

        �⃗� = [𝑥1, 𝑥2, 𝑥3] = [𝐷, 𝑑, 𝑃] 



 

 

 
Fig.16 Tension/compression spring design 

Table 15 Comparative results for Tension/compression spring design 

Algorithms   Worst Best Mean Median Std Friedman 

Ranking 

Wilcoxon 

MELGWO 7.544E+03 6.060E+03 6.599E+03 6.604E+03 5.140E+02 6 (－) 

GGPSO 8.560E+03 6.603E+03 7.455E+03 7.484E+03 5.065E+02 11 (＋) 

IDBO 7.544E+03 6.060E+03 6.642E+03 6.410E+03 5.455E+02 8 (＋) 

DTSMA 7.544E+03 6.060E+03 6.452E+03 6.091E+03 5.354E+02 2 (－) 

CPSOGSA 7.544E+03 6.060E+03 6.521E+03 6.390E+03 4.375E+02 7 (＋) 

WOA 2.606E+04 6.074E+03 9.960E+03 8.175E+03 4.251E+03 12 (＋) 

SCA 8.998E+03 6.421E+03 7.531E+03 7.331E+03 8.606E+02 10 (＋) 

HHO 1.186E+04 6.290E+03 7.049E+03 6.891E+03 9.774E+02 9 (＋) 

COA 7.800E+03 6.060E+03 6.510E+03 6.373E+03 5.077E+02 4 (＋) 

CDO 6.930E+03 6.182E+03 6.461E+03 6.444E+03 1.876E+02 5 (＋) 

OMA 7.333E+03 6.060E+03 6.347E+03 6.207E+03 3.754E+02 3 (＋) 

SWO 2.203E+04 7.604E+03 1.124E+04 1.006E+04 3.676E+03 13 (＋) 

ESC 6.187E+03 6.061E+03 6.103E+03 6.097E+03 3.163E+01 1 / 

 

In Table 15, the ESC algorithm once again outperformed all other algorithms. ESC achieved 

the best worst-case performance of 6.187E+03 and the most optimal best-case result of 6.061E+03. 

It also demonstrated the lowest mean and median values of 6.103E+03 and 6.097E+03, respectively, 

coupled with an exceptionally low standard deviation of 3.163E+01, highlighting its minimal 

variability and consistent performance. This exceptional performance earned ESC the top spot in 

the Friedman ranking. DTSMA followed in second place, showcasing strong results but with a 

higher standard deviation of 5.354E+02, indicating less consistency compared to ESC. MELGWO, 

COA, and CPSOGSA also performed well but exhibited greater variability, as evidenced by their 

higher standard deviations, which prevented them from surpassing ESC's superior performance. 

 

5.1.4 Rolling Element Bearing Design 

This problem aims to enhance the load-bearing ability of a rolling element bearing by utilizing 

five design variables and parameters. The design variables specified are the pitch diameter (𝐷𝑚), 

ball diameter (𝐷𝑏), coefficients of outer and inner raceway curvature (𝑓0 and𝑓1), and the total ball 

count (𝑍 ). The design parameters include e,𝜀 ,,, 𝐾𝐷𝑚𝑎𝑥 , and 𝐾𝐷𝑚𝑖𝑛 , which only appear in the 



constraints. These are all treated as variables, combining both the five design variables and five 

design parameters. The problem is characterized by nine non-linear constraints that reflect 

manufacturing and kinematic considerations. 

Maximize: 

𝑓(�⃗�) = {
𝐷𝑏
1.8𝑓𝑐𝑍

2
3  , 𝑖𝑓 𝐷𝑏 ≤ 25.4𝑚𝑚

3.647𝐷𝑏
1.4𝑓𝑐𝑍

2
3  ,otherwise

 

subject to: 

𝑔1(�⃗�) = 𝑍 −
𝜙0

2 𝑠𝑖𝑛−1(
𝐷𝑏
𝐷𝑚
)
− 1 ≤ 0 

                                                              𝑔2(�⃗�) = 𝐾𝐷𝑚𝑖𝑛(D − d) − 2𝐷𝑏 ≤ 0 

             𝑔3(�⃗�) = 2𝐷𝑏 − 𝐾𝐷𝑚𝑎𝑥(𝐷 − 𝑑) ≤ 0 

                                                 𝑔4(�⃗�) = 𝜁𝐵𝑤 −𝐷𝑏 ≤ 0                                                                                                                     

(18) 

        𝑔5(�⃗�) = 𝐷𝑚 − 0.5(𝐷 + 𝑑) ≥ 0 

        𝑔6(�⃗�) = (0.5 + 𝑒)(𝐷 + 𝑑) − 𝐷𝑚 ≥ 0 

        𝑔7(�⃗�) = 𝜀𝐷𝑏 − 0.5(𝐷 − 𝐷𝑚 − 𝐷𝑏) ≤ 0 

        𝑔8(�⃗�) = 𝑓𝑖 − 0.515 ≥ 0 

        𝑔9(�⃗�) = 𝑓0 − 0.515 ≥ 0 

where: 

     𝑓𝑐 = 37.91{1 + {1.04 (
1−𝛾

1+𝛾
)
1.72

(
𝑓𝑖(2𝑓0−1)

𝑓0(2𝑓𝑖−1)
)
0.41

}0.41}
10

3 }−0.3 

      𝛾 =
𝐷𝑏 𝑐𝑜𝑠(𝛼)

𝐷𝑚
, 𝑓𝑖 =

𝑟𝑖

𝐷𝑏
, 𝑓0 =

𝑟0

𝐷𝑏
 

                       𝜙0 = 2𝜋 − 2 × 𝑐𝑜𝑠
−1(

(
𝐷−𝑑

2
−
3𝑇

4
)2+(

𝐷

2
−
𝑇

4
−𝐷𝑏)

2−(
𝑑

2
+
𝑇

4
)2

2(
𝐷−𝑑

2
−
3𝑇

4
)(
𝐷

2
−
𝑇

4
−𝐷𝑏)

) 

             𝑇 = 𝐷 − 𝑑 − 2𝐷𝑏, 𝐷 = 160, 𝑑 = 90,𝐵𝑤 = 30 

 

with bounds: 

              0.5(𝐷 + 𝑑) ≤ 𝐷𝑚 ≤ 0.6(𝐷 + 𝑑) 

              0.15(𝐷 − 𝑑) ≤ 𝐷𝑏 ≤ 0.45(𝐷 − 𝑑) 

              4 ≤ 𝑍 ≤ 50 

               0.515 ≤ 𝑓𝑖 ≤ 0.6 

              0.515 ≤ 𝑓0 ≤ 0.6 

              0.4 ≤ 𝐾𝐷𝑚𝑖𝑛 ≤ 0.5 

              0.6 ≤ 𝐾𝐷𝑚𝑎𝑥 ≤ 0.7 

        0.3 ≤ 𝜀 ≤ 0.4 

        0.02 ≤ 𝑒 ≤ 0.1 

        0.6 ≤ 𝜁 ≤ 0.85 

 

 



 
Fig.17 Rolling element bearing design 

 

Table 16 Comparative results for rolling element bearing design 

Algorithms   Worst Best Mean Median Std Friedman 

Ranking 

Wilcoxon 

MELGWO 1.703E+04 1.696E+04 1.698E+04 1.698E+04 2.172E+01 5 (＋) 

GGPSO 1.086E+16 3.488E+04 3.619E+14 3.489E+04 1.982E+15 13 (＋) 

IDBO 3.488E+04 1.696E+04 1.843E+04 1.706E+04 3.797E+03 8 (＋) 

DTSMA 1.696E+04 1.696E+04 1.696E+04 1.696E+04 1.632E-01 2 (＋) 

CPSOGSA 1.706E+04 1.702E+04 1.705E+04 1.705E+04 1.022E+01 6 (＋) 

WOA 2.886E+04 1.698E+04 1.882E+04 1.778E+04 2.797E+03 11 (＋) 

SCA 1.842E+04 1.709E+04 1.743E+04 1.734E+04 3.130E+02 10 (＋) 

HHO 2.879E+04 1.697E+04 1.806E+04 1.706E+04 2.684E+03 7 (＋) 

COA 1.702E+04 1.696E+04 1.697E+04 1.696E+04 1.279E+01 4 (＋) 

CDO 1.759E+04 1.706E+04 1.721E+04 1.717E+04 1.330E+02 9 (＋) 

OMA 1.832E+04 1.696E+04 1.700E+04 1.696E+04 2.489E+02 3 (＋) 

SWO 1.277E+15 1.989E+04 4.852E+13 2.796E+04 2.328E+14 12 (＋) 

ESC 1.696E+04 1.696E+04 1.696E+04 1.696E+04 7.898E-02 1 / 

In Table 16, the ESC algorithm demonstrated unparalleled performance, achieving the best 

results across all metrics. ESC achieved the lowest worst-case and best-case results of 1.696E+04, 

maintaining consistent performance with a mean and median of 1.696E+04. The standard deviation 

was also the lowest at 7.898E-02, indicating minimal variability and superior stability. These 

attributes allowed ESC to secure first place in the Friedman ranking, outperforming all other 

algorithms. DTSMA closely followed ESC, ranking second in the Friedman test. It showed almost 

identical results to ESC, but with a slightly higher standard deviation, reflecting minor performance 

variability. MELGWO, COA, and OMA also showed competitive results, but their higher standard 

deviations indicated less consistency, keeping them behind ESC in overall performance. 

5.2 Three-dimensional UAV Path Planning 

Path planning problem is one of the well-known cases in engineering domain [81]. This section 

addresses the path planning issue for UAVs by integrating the optimal criterion with the UAV's constraint 

cost function. To further demonstrate the ESC algorithm's capability in tackling complex problems, we 



examine two distinct UAV 3D path planning scenarios, each defined by different optimization criteria 

and constraints. In this section, the maximum number of iterations 𝑇of each algorithm is set to 500. The 

population 𝑁 was 30 and ran independently 30 times for comparison. 

5.2.1 Three-dimensional UAV path planning (case 1) 

        To ensure UAVs operate effectively, the chosen path must meet an optimal standard tailored to the 

task at hand. Focusing on activities like aerial photography, mapping, and surface inspection, our strategy 

is to reduce the overall path distance. The UAV's navigation, directed from a ground control station (GCS), 

is defined by a sequence of n waypoints that it is required to traverse. Each waypoint corresponds to a 

coordinate-based path node𝑃𝑖𝑗 = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗)  on the search map. By representing the Euclidean 

distance between two nodes as‖𝑃𝑖𝑗𝑃𝑖,𝑗+1‖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , the cost 𝐹1 related to the path length can be computed 

using Eq. (23).[82] 

 𝐹1(𝑋𝑖) = ∑ ‖𝑃𝑖𝑗𝑃𝑖,𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖𝑛−1
𝑗=1                                                      (19) 

     In addition to achieving optimality, the planned route must guarantee the UAV's safe operation 

by steering it clear of potential hazards, typically from obstacles present in the operational zone. Let 

K represents the set of all threats, each presumed to be depicted by a cylinder with a central 

coordinate coordinate 𝐶𝑘  and radius 𝑅𝑘 , as illustrated in Fig.18. For a specified path 

segment‖𝑃𝑖𝑗𝑃𝑖,𝑗+1‖ , the corresponding threat cost is directly related to its distance, 𝑑𝑘 , from 

𝐶𝑘.Taking into account the UAV's diameter, D, and the safety margin, S, around the collision zone, 

the threat cost 𝐹2 is calculated across waypoints 𝑃𝑖𝑗 for the obstacle set K as follows: 

{
 
 

 
 𝐹2(𝑋𝑖) = ∑ ∑ 𝑇𝑘(𝑃𝑖𝑗𝑃𝑖,𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ),𝐾

𝑘=1
𝑛−1
𝑗=1

𝑇𝑘(𝑃𝑖𝑗𝑃𝑖,𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) = {

0,    𝑖𝑓 𝑑𝑘 > 𝑆 + 𝐷 + 𝑅𝑘
(𝑆 + 𝐷 + 𝑅𝑘) − 𝑑𝑘 , 𝑖𝑓 𝐷 + 𝑅𝑘 < 𝑑𝑘 ≤ 𝑆 + 𝐷 + 𝑅𝑘

∞   𝑖𝑓 𝑑𝑘 ≤ 𝑆 + 𝐷 + 𝑅𝑘

             (20) 

 
Fig.18 Determination of the threat cost. 

 

       It should be noted that the UAV's size determines the diameter D, whereas the distance S is 

affected by several factors such as the specific application, operational conditions, and accuracy of 

positioning. For example, in static environments with reliable GPS signals, S may be set at tens of 

meters, whereas in environments with dynamic obstacles and poor GPS signal strength, S could 

extend to hundreds of meters to ensure safe positioning. 

      The flying altitude is usually confined within two defined limits: the minimum and maximum 



heights. For instance, in applications like surveying and search tasks, it is crucial to gather visual 

data using a camera with a designated resolution and field of view, requiring restrictions on the 

altitude at which the UAV flies. Let ℎ𝑚𝑖𝑛and ℎ𝑚𝑎𝑥 indicate the minimum and maximum heights, 

respectively. The altitude cost associated with a waypoint 𝑃𝑖𝑗is calculated as: 

                                         

max min
min max
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2
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 +
−  
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                         (21)    

     where ℎ𝑖𝑗 represents the flight height relative to the ground, as depicted in Fig.19. This 

formulation ensures that 𝐻𝑖𝑗 maintains the average height while penalizing out-of-range values. 

Summing 𝐻𝑖𝑗 for all waypoints yields the altitude cost: 

𝐹3(𝑋𝑖) = ∑ 𝐻𝑖𝑗
𝑛
𝑗=1                                                      (22) 

      
                                  Fig.19 Altitude cost explanation. 

        The smooth cost evaluates the rates of turning and climbing, which are essential for creating feasible 

paths. As depicted in Fig.20, the turning angle,𝜙𝑖𝑗, represents the angle between two consecutive path 

segments.𝑃𝑖𝑗
′𝑃𝑖,𝑗+1

′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑃𝑖,𝑗+1
′ 𝑃𝑖,𝑗+2

′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ,projected onto the horizontal plane Oxy. Let �⃗⃗�  represent the unit 

vector along the z-axis, the projected vector can be computed as follows: 

𝑃𝑖𝑗′𝑃𝑖,𝑗+1
′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = �⃗⃗� × (𝑃𝑖𝑗𝑃𝑖,𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ × �⃗⃗�)                                               (23) 

       Therefore, the turning angle is calculated as follows: 

𝜙𝑖𝑗 = 𝑎𝑟𝑐𝑡𝑎𝑛(
‖𝑃𝑖𝑗

′⬚𝑖,𝑗+1
′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗×𝑃𝑖,𝑗+1

′ 𝑃𝑖,𝑗+2
′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖

𝑃𝑖𝑗
′ 𝑃𝑖,𝑗+1

′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⋅𝑃𝑖,𝑗+1
′ 𝑃𝑖,𝑗+2

′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
)                                      (24) 

      The climbing angle, 𝜓𝑖𝑗 , represents the angle between the path section 𝑃𝑖𝑗𝑃𝑖,𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and its 

projected image 𝑃𝑖𝑗′𝑃𝑖,𝑗+1
′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  onto the horizontal plane. It is expressed as: 

𝜓𝑖𝑗 = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑧𝑖,𝑗+1−𝑧𝑖𝑗

‖𝑃𝑖𝑗
′ 𝑃𝑖,𝑗+1

′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖
)                                                    (25) 

      The smooth cost is subsequently calculated as: 

𝐹4(𝑋𝑖) = 𝑎1∑ 𝜙𝑖𝑗 + 𝑎2∑ |𝜓𝑖𝑗 −𝜓𝑖,𝑗−1|
𝑛−1
𝑗=1

𝑛−2
𝑗=1                              (26) 



 
 Fig.20 Turning and climbing angle calculation. 

where 𝑎1and 𝑎2 denote the penalty factors for the turning and climbing angles, respectively. 

Taking into account the optimality, safety, and feasibility constraints linked to a path 𝑋𝑖, the overall 

cost function can be formulated as follows: 

𝐹(𝑋𝑖) = ∑ 𝑏𝑘𝐹𝑘(𝑋𝑖)
4
𝑘=1                                                  (27) 

      where 𝑏𝑘  is the weight coefficient, and 𝐹1(𝑋𝑖) to 𝐹4(𝑋𝑖) correspondingly represent the costs 

associated with path length (19), threat (20), flight height (22), and smoothness (26). The decision 

variable is 𝑋𝑖 , comprising the list of n waypoints 𝑃𝑖𝑗 = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗) such that 𝑃𝑖𝑗𝜖𝑂 , where 𝑂 

denotes the operating space of UAVs. With these definitions established, the cost function F is fully 

determined and can serve as the input for the path planning process. 

 
                   Fig.21 The best path found by ESC (case 1) 

      In this article, we set 𝑏1,𝑏2 ,𝑏3 and 𝑏4 to 5,1,10,1, respectively. The starting point coordinates 

Start= (100,100,150) and the end point coordinates are set to end= (800,800,150). Fig.21 shows the 

results of the optimal path found by the ESC algorithm, and Fig.22 shows the results of other 

competitors, which shows that the ESC algorithm can find a shorter and smoother path.  

Table 17 Comparative results for Three-dimensional UAV path planning (case 1) 

Algorithms   Worst Best Mean Median Std Friedman Wilcoxon 



Ranking 

MELGWO 6.176E+03 5.120E+03 5.456E+03 5.287E+03 3.630E+02 4 (＋) 

GQPSO 7.094E+03 5.503E+03 6.423E+03 6.414E+03 3.776E+02 9 (＋) 

IDBO 7.175E+03 5.023E+03 6.060E+03 6.060E+03 6.155E+02 6 (＋) 

DTSMA 5.886E+03 5.005E+03 5.141E+03 5.066E+03 2.020E+02 2 (－) 

CPSOGSA 7.669E+03 6.654E+03 7.167E+03 7.187E+03 2.955E+02 11 (＋) 

WOA 9.596E+03 6.184E+03 7.653E+03 7.453E+03 8.637E+02 13 (＋) 

SCA 7.709E+03 5.426E+03 6.296E+03 6.100E+03 6.518E+02 8 (＋) 

HHO 9.101E+03 5.498E+03 6.704E+03 6.619E+03 8.633E+02 10 (＋) 

COA 7.416E+03 5.066E+03 5.896E+03 5.982E+03 5.964E+02 5 (＋) 

CDO 1.100E+04 5.218E+03 6.539E+03 5.662E+03 1.846E+03 7 (＋) 

OMA 5.839E+03 5.087E+03 5.262E+03 5.180E+03 2.012E+02 3 (＋) 

SWO 8.403E+03 6.379E+03 7.440E+03 7.531E+03 5.992E+02 12 (＋) 

ESC 5.901E+03 5.029E+03 5.110E+03 5.081E+03 1.518E+02 1 / 

 

In Table 17, the ESC algorithm did not lead in terms of the worst and best performances but 

topped the Friedman rankings. While ESC's worst performance was not the lowest at 5.901E+03, 

and its best performance was not the highest at 5.029E+03, it exhibited the best consistency across 

all metrics. It achieved the lowest mean at 5.110E+03 and the lowest median at 5.081E+03. 

Significantly, it had the smallest standard deviation of 1.518E+02 among all algorithms, indicating 

the highest stability and the least variability. DTSMA followed closely but had a higher standard 

deviation of 2.020E+02, suggesting slightly less consistency. MELGWO, COA, and OMA also 

performed well, but their higher standard deviations meant they could not match ESC's superior 

stability and overall performance.  



  

  

  

  



  

  
 

                                   Fig.22 The best path found by other algorithms (case 1) 

 

5.2.2 Three-dimensional UAV path planning (case 2) 

Let the starting point of the UAV flight be represented as (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) , and the ending point 

as (𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒) . Utilizing cubic spline interpolation, a smooth curve is generated with g discrete 

points(𝑥𝑠 , 𝑦𝑠, 𝑧𝑠) , (𝑥1, 𝑦1, 𝑧1) , ,, (𝑥𝑔−1, 𝑦𝑔−1, 𝑧𝑔−1) ,(𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒) . This curve is then discretized into a 

series of points(ℎ1, ℎ2…ℎ𝑔) , where the coordinates of hm are(𝑥𝑚 , 𝑦𝑚, 𝑧𝑚) . Therefore, the objective 

function for this problem can be derived, as expressed in Equation (28).[83] 

𝐹𝑡𝑐 = 𝑤1 × 𝐹𝑝𝑐 +𝑤2 × 𝐹ℎ𝑐 +𝑤3 × 𝐹𝑠𝑐                                 (28) 

     where 𝐹𝑡𝑐represents the total cost, 𝐹𝑝𝑐 denotes the cost of path length, 𝐹ℎ𝑐 represents the cost 

associated with the height's standard deviation,𝐹𝑠𝑐 indicates the cost of path planning smoothness, 

and 𝑤𝑖 (i = 1,2,3) represents the weight coefficients. The constraints on the weight coefficients are 

specified in Equation (29). 

{
𝑤𝑖 ≥ 0

∑ 𝑤𝑖 = 1
3
𝑖=1

                                                                  (29)          

      Typically, in UAV flight operations, optimizing path length is critical to saving time and reducing 

costs while ensuring safety. The mathematical model of UAV is depicted in Equation (30). 

                                               𝐹𝑝𝑐 = ∑ ‖(𝑥𝑚+1, 𝑦𝑚+1, 𝑧𝑚+1) − (𝑥𝑚, 𝑦𝑚, 𝑧𝑚)‖2
𝑔−1
𝑚=1                              

                   (30) 

      where (𝑥𝑚, 𝑦𝑚, 𝑧𝑚) represents the 𝑚𝑡ℎ waypoint in the UAV planning path. 

      Furthermore, the flight altitude of the UAV significantly affects the control system and safety, 

necessitating consideration of this factor. Equation (31) represents the mathematical model. 

𝐹ℎ𝑐 = √∑ (𝑧𝑚 −
1

𝑛
∑ 𝑧𝑚)2
𝑔
𝑘=1

𝑔
𝑚=1                                              

                   (31)        



     Lastly, we must also account for the impact of UAV turning maneuvers, and the corresponding 

mathematical model is provided in Equation (32).                      

𝐹𝑠𝑐 = ∑ (𝑎𝑟𝑐𝑐𝑜𝑠(
𝜑𝑚+1×𝜑𝑚

|𝜑𝑚+1|×|𝜑𝑚|

𝑔−2
𝑚=1 ))                                                

                   (32) 

where 𝜑𝑚 represents (𝑥𝑚+1 − 𝑥𝑚, 𝑦𝑚+1 − 𝑦𝑚,𝑧𝑚+1 − 𝑧𝑚). 

In conclusion, we can derive the model for the UAV path planning optimization problem, as 

presented in Equation (33). 

                                                             𝑚𝑖𝑛
𝐿
𝐹𝑡𝑐(𝐿)        

                                           𝑠. 𝑡. 𝑝𝑎𝑡ℎ(𝐿) ∉ 𝐺𝑟𝑜𝑢𝑛𝑑 ∪ 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 

                                        (33) 

where 𝐿 represents the feasible flight path, 𝐺𝑟𝑜𝑢𝑛𝑑 and 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 denote the ground and 

obstacles, respectively. In this paper, we characterize the ground and obstacle sets using Equation 

(34). 

𝑧 = 𝑠𝑖𝑛( 𝑦 + 1) + 𝑠𝑖𝑛( 𝑥) + 𝑐𝑜𝑠( 𝑥2 + 𝑦2) + 2 × 𝑐𝑜𝑠( 𝑦) + 𝑠𝑖𝑛( 𝑥2 + 𝑦2) 

                                                                                                                          (34) 

 
Fig.23 The best path found by ESC (case 2)  

In this study, we set 𝑤1,𝑤2, and 𝑤3 to 0.4, 0.4, and 0.2, respectively, with corresponding Start= 

(0,0,20) and end= (200, 200, 20). Fig.23 displays the outcomes of the optimal path found by the 

ESC algorithm, and Fig.24 displays the outcomes of the optimal path found by other competitors, 

which shows that the ESC algorithm can find a shorter path than other algorithms.  

Table 18 Comparative results for Three-dimensional UAV path planning (case 2) 

Algorithms  Worst Best Ave Median Std Friedman 

Ranking 

Wilcoxon 

MELGWO 6.755E+02 3.401E+02 4.950E+02 5.144E+02 9.598E+01 3 (＋) 

GQPSO 6.218E+02 5.388E+02 5.648E+02 5.632E+02 2.103E+01 12 (＋) 

IDBO 6.172E+02 2.741E+02 5.161E+02 5.451E+02 8.685E+01 8 (＋) 

DTSMA 5.693E+02 3.400E+02 5.062E+02 5.310E+02 7.808E+01 5 (＋) 

CPSOGSA 7.529E+02 3.400E+02 5.196E+02 5.141E+02 1.237E+02 7 (＋) 

WOA 7.501E+02 3.631E+02 5.489E+02 5.390E+02 1.109E+02 9 (＋) 

SCA 7.675E+02 5.220E+02 5.611E+02 5.544E+02 4.305E+01 11 (＋) 

HHO 6.952E+02 3.518E+02 5.518E+02 5.675E+02 5.980E+01 10 (＋) 

COA 6.036E+02 3.485E+02 5.064E+02 5.347E+02 7.944E+01 6 (＋) 

CDO 6.726E+02 4.065E+02 5.119E+02 5.239E+02 5.572E+01 4 (＋) 

OMA 4.951E+02 3.404E+02 4.166E+02 4.271E+02 6.096E+01 2 (＋) 

SWO 8.863E+02 5.581E+02 6.971E+02 6.855E+02 9.090E+01 13 (＋) 

ESC 3.793E+02 3.402E+02 3.457E+02 3.419E+02 1.009E+01 1 / 



In Table 18, ESC continued to demonstrate its dominance by ranking first in the Friedman test. 

ESC achieved the lowest worst-case performance of 3.793E+02 and the most optimal best-case 

result of 3.402E+02. The algorithm maintained a consistent mean of 3.457E+02 and median of 

3.419E+02, with the lowest standard deviation of 1.009E+01, indicating exceptional stability and 

minimal variability. MELGWO followed in third place, showing strong results but with a higher 

standard deviation of 9.598E+01, indicating less consistency compared to ESC. DTSMA and COA 

also showed competitive performance, but their higher standard deviations reflected greater 

variability, which kept them behind ESC in overall performance. 

 

  

  

  



  

  

  
 

                               Fig. 24 The best path found by other algorithms (case 2) 

6. Conclusion and Prospects 

This study introduces a new meta-heuristic algorithm named the ESC as an alternative 

approach for solving optimization problems. ESC's main inspiration comes from the crowds' 

interactions during the evacuation process. The algorithm's performance was validated through a 

series of experiments using 30 benchmark functions from the CEC 2017 test suite with dimensions 

of 10,30, 50, and 100, and 12 benchmark functions from the CEC 2022 test suite with dimensions 

of 10 and 20. These tests assess the proposed algorithm's capability for exploration and exploitation 

and avoid local optima and convergence. Additionally, we conducted a comprehensive qualitative 

and statistical analysis to verify the effectiveness and robustness of the algorithm. Further, we 

evaluated the ability of the proposed algorithm to solve practical and Complex problems through 

four realistic engineering problems and two UAV path planning problems. Our experiments showed 

that the average performance of ESC is superior to that of MELGWO, GQPSO, IDBO, DTSMA, 



CPSOGSA, WOA, SCA, HHO, COA, CDO, OMA, and SWO. 

However, despite its strong performance, the ESC algorithm has some limitations. In higher-

dimensional optimization problems, the difference in performance between ESC and other 

competitive algorithms, such as DTSMA, becomes less pronounced. DTSMA even slightly 

outperforms ESC in certain specific test cases, indicating that ESC may encounter challenges when 

dealing with more complex, high-dimensional spaces. Additionally, while ESC is effective across a 

range of benchmark functions and practical problems, its performance can vary depending on the 

nature of the optimization landscape, particularly in cases where the problem's complexity or 

constraints are highly specialized. 

Future research could extend the capabilities of ESC by developing binary, multi-objective, 

and dynamic multi-objective variants, which would broaden its applicability to a wider range of 

optimization problems in engineering and beyond. Additionally, incorporating diverse strategies for 

managing constraints could provide valuable insights when addressing real-world constrained 

scenarios. Another promising direction involves improving the current ESC algorithm by integrating 

strengths from other meta-heuristic algorithms, such as hybridization with evolutionary operators 

or adaptive mechanisms, to enhance its performance and address any identified shortcomings. 

Furthermore, exploring the application of ESC in optimizing hyperparameters of machine learning 

algorithms and integrating it with machine learning frameworks represents a significant opportunity 

for advancing both the algorithm and its practical utility. 
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